Home
Class 12
MATHS
The value of Lim(x->0^+)(int1^cosx(cos^-...

The value of `Lim_(x->0^+)(int_1^cosx(cos^-1t)dt)/(2x-sin(2x))`is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x to 0) (2 int_(0)^(cosx) cos^(-1) t dt)/( 2x -sin 2x) is equal to

The value of lim _( x to 0^(+))(int _(1)^(cos x) (cos ^(-1) t )dt)/(2x - sin 2x) is equal to:

The value of lim_(x to 0)(int_(0)^(x^(2))sec^(2)t dt)/(x sin x) is equal to -

The value of lim_(xrarr0)(int_0^(x^2) cos(t^2)dt)/(xsinx) is

The value of lim_(x rarr0)(int_(0)^(x^(2))cos t^(2)dt)/(x sin x) is

The value of lim_(x rarr0)(int_0^(x^2) cost^2dt)/(x sin x) is

The value of lim_(x rarr0)(2int_(0)^(cos x ) cos^(-1) (t))/(2x- sin 2 x)dx is

The value of lim_(x rarr0)(2int_(0)^(cos x ) cos^(-1) (t))/(2x- sin 2 x)dx is

The value of lim_(x rarr0)(2int_(0)^(cos x ) cos^(-1) (t))/(2x- sin 2 x)dx is