Home
Class 12
MATHS
Solve for x: log(x+1)+log(x-1)=log99...

Solve for x: `log(x+1)+log(x-1)=log99`

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve for x if log(x-1)+log(x+1)=log1

Solve for x : log(x - 1) + log(x + 1) = log_(2)1 .

2log x-log(x+1)-log(x-1)=

Solve for x:\ log^2 (4-x)+log(4-x)*log(x+1/2)-2log^2(x+1/2)=0

Solve for x:\ log^2 (4-x)+log(4-x)*log(x+1/2)-2log^2(x+1/2)=0

Solve for x:|log^(2)(4-x)+log(4-x)*log(x+(1)/(2))-2log^(2)(x+(1)/(2))=

Solve for x, if : log_(x)49 - log_(x)7 + "log"_(x)(1)/(343) + 2 = 0 .

Solve for x : (i) log_(10) (x - 10) = 1 (ii) log (x^(2) - 21) = 2 (iii) log(x - 2) + log(x + 2) = log 5 (iv) log(x + 5) + log(x - 5) = 4 log 2 + 2 log 3

Solve the equation log(x+1)+log(x-1)=log3

Solve for x:(log)_(4)(x^(2)-1)-(log)_(4)(x-1)^(2)=(log)_(4)sqrt((4-x)^(2))