Home
Class 12
MATHS
Prove that 1/(1+logba+logbc)+1/(1+logca+...

Prove that `1/(1+log_ba+log_bc)+1/(1+log_ca+log_cb)+1/(1+log_ab+log_ac)=1.`

Promotional Banner

Similar Questions

Explore conceptually related problems

1/(1+log_b a+log_b c)+1/(1+log_c a+log_c b)+1/(1+log_a b+log_a c)

Prove that: (log_a(log_ba))/(log_b(log_ab))=-log_ab

Prove that (log_ab x)/(log_a x)=1+log_x b

Prove that sum(1)/(1+log(bc))=1

(1)/(1+log_(b)a+log_(b)c)+(1)/(1+log_(c)a+log_(c)b)+(1)/(1+log_(a)b+log_(a)c)

Prove that 1/(log_a P)+1/(log_b P)+1/(log_c P)=1/(log_x P) where, abc=x

Prove that ((log)_(a)N)/((log)_(ab)N)=1+(log)_(a)b

Prove that : (1)/( log _(a) ^(abc) )+(1)/(log_(b)^(abc) ) + (1)/( log _c^(abc)) =1

The value of 1/ ( 1+ log_(ab)c) + 1/(1+ log_(ac)b) + 1/ ( 1+ log_(bc)a) equals