Home
Class 12
MATHS
Find the sum of all possible values of x...

Find the sum of all possible values of x satisfying simultaneous the equations `log^2x – 3 log x = log (x^2) – 4 and log^2 (100 x) + log^2 (10 x) = 14 + log)(1/x)`.[Note : Assume base of logarithm is 10.1]

Promotional Banner

Similar Questions

Explore conceptually related problems

The sum of all possible values of x satisfying the equation 6log_(x-1)10+log_(10)(x-1)=5

Sum of all possible values of 'x' which satisfy the equation log_(3)(x – 3) = log_(9)(x – 1) is :

log^(2)(100x)+log^(2)(10x)=14+log((1)/(x))

The value of x satisfies the equation (1-2(log x^(2)))/(log x-2(log x)^(2))=1

The possible value of x satisfying the equation log_(2)(x^(2)-x)log_(2)((x-1)/(x))+(log_(2)x)^(2)=4 is

The value of x satisfying the equation x + log_(10) (1 + 2^x) = x log_10 5 + log_10 6 is

The value(s) of x satisfying the equation 4^(log_(2)(ln x))-1+ln^(3)x-ln^(2)x-5ln x+7=0

Find the values of x satisfying the equation |x-2|^(log_(3)x^(4)-3log_(x)9)(x-2)^(10)=1 .