Home
Class 12
MATHS
Given (log2(b^3/8))/log3(27/a^2)=andlog3...

Given `(log_2(b^3/8))/log_3(27/a^2)=andlog_3(9/a)=log_2(b/4).` If the largest single digit number which can divide the value of `(a/b)`is m, then find the value of m.

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of log_(2/3)""8/27

Find the value of log_(2/3)""8/27

Find the value of log_(2/3)""8/27

Find the value of log_(2/3)""8/27

if (a+log_(4)3)/(a+log_(2)3)=(a+log_(8)3)/(a+log_(4)3)=b then find the value of b

If log_(a)3=2 and log_(b)8=3, then log_(a)b is

if (a+log_4 3)/(a+log_2 3)= (a+log_8 3)/(a+log_4 3)=b then find the value of b

Prove that log_3 2=log_9 4=log_27 8

If (log_(3)(a))^(3)+(log_(b)(3))^(3)+9log_(b)(a)=27 Then the value of a is

Find the values : log_(2)[log_(2){log_(3)(log_(3)27^(3))}]