Home
Class 12
MATHS
If I=int0^(1)1/(1+x^8)dx then:...

If `I=int_0^(1)1/(1+x^8)dx` then:

Promotional Banner

Similar Questions

Explore conceptually related problems

If I=int_0^(1) (1)/(1+x^(pi//2))dx , then\

" If I=int_(0)^(1)(1-x^(4))^(7)dx and J=int_(0)^(1)(1-x^(4))^(6)dx then (I)/(J)

If I=int_0^1 (xdx)/(8+x^3) then the smallest interval in which I lies is (A) (0,1/8) (B) (0,1/9) (C) (0,1/10) (D) (0,1/7)

Let I_1=int_0^1 (dx)/(1+x^(1/3)) and I_2=int_0^1 (dx)/(1+x^(1/4)) then 4I_1+3I_2=

Let I_1=int_0^1e^(x^2)dx and I_2=int_0^(1)2x^(2)e^(x^2)dx then the value of I_1 +I_2 is equal to

If 2int_0^1 tan^(-1)x dx= int_0^1 cot^(-1)(1-x+x^2) dx then int_0^1 tan^(-1)(1-x+x^2) dx=

if I=int_0^(1.7)[x^2]dx then I equals

If I_1=int_0^1(e^x)/(1+x) dx aand I_2=int_0^1 x^2/(e^(x^3)(2-x^3)) dx then I_1/I_2 is

If I_1=int_0^1(1+x^8)/(1+x^4)dxa n dI_2=int_0^1(1+x^9)/(1+x^3)dx ,"t h e n" I_2

I=int_(0)^(1)((1+x)/(2-x))dx