Home
Class 12
MATHS
If A,B,C,D are any four points in spac...

If A,B,C,D are any four points in space then prove that `|overset(to)(AB)xx overset(to)(CD) + overset(to)(BC)xx overset(to)(AD) + overset(to)(CA)xx overset(to)(BD) |`
`= (" area of " Delta ABD)`

Promotional Banner

Similar Questions

Explore conceptually related problems

The scalar overset(to)(A) .[(overset(to)(B) + overset(to)( C)) xx (overset(to)(A) + overset(to)(B) + overset(to)( C))] equals

The scalar overset(to)(A) .[(overset(to)(B) xx overset(to)( C)) xx (overset(to)(A) + overset(to)(B) + overset(to)( C))] equals

If |overset(to)(a) + overset(to)(b)| =| overset(to)(a) - overset(to)(b) | , prove that overset(to)(a) and overset(to)(b) are perpendicular

If the vectors overset(to)(b), overset(to)(c ) , overset(to)(d) are not coplanar then prove than the vectors (overset(to)(a) xx overset(to)(b)) xx (overset(to)(c ) xx overset(to)(d)) + (overset(to)(a) xx overset(to)(c )) xx (overset(to)(d) xx overset(to)(b)) +(overset(to)(a) xx overset(to)(d)) xx (overset(to)(b) xx overset(to)( c)) is parallel to overset(to)(a)

For any three vectors overset(to)(a) , overset(to)(b) and overset(to) ( c ) , prove that vectors overset(to)(a) - overset(to)(b) , overset(to)(b) - overset(to) ( c), overset(to)(c) - overset(to)(a) are coplanar.

If overset(to)(a) , overset(to)(b) , overset(to)(c ) " and " overset(to)(d) are the unit vectors such that (overset(to)(a)xx overset(to)(b)). (overset(to)(c )xx overset(to)(d)) =1 " and " overset(to)(a), overset(to)(c ) = .(1)/(2) , then

If overset(to)(a) , overset(to)(b) , overset(to)(c ) " and " overset(to)(d) are the unit vectors such that (overset(to)(a)xx overset(to)(b)). (overset(to)(c )xx overset(to)(d)) =1 " and " overset(to)(a), overset(to)(c ) = .(1)/(2) , then

A,B,C and d are four points in a plane with position vectors overset(to)(a),overset(to)(b),overset(to)(c ) and overset(to)(d) respectively such that (overset(to)(a)-overset(to)(d)).(overset(to)(b)-overset(to)(c))=(overset(to)(b)-overset(to)(d))(overset(to)(c)-overset(to)(a))=0 The point D then is the .... of the DeltaABC

A,B,C and d are four points in a plane with position vectors overset(to)(a),overset(to)(b),overset(to)(c ) and overset(to)(d) respectively such that (overset(to)(a)-overset(to)(d)).(overset(to)(b)-overset(to)(c))=(overset(to)(b)-overset(to)(d))(overset(to)(c)-overset(to)(a))=0 The point D then is the .... of the DeltaABC