Home
Class 12
MATHS
[" (8.) (i)/If "y=x^(y)," prove that "x(...

[" (8.) (i)/If "y=x^(y)," prove that "x(y)/(dx)=(y)/(1-y log x)],[" (i) If "x=e^(x/y)," prove that "(dy)/(dx)=(x-y)/(x log x)" ."]

Promotional Banner

Similar Questions

Explore conceptually related problems

If x= e^((x)/(y)) , then prove that (dy)/(dx)= (x-y)/(x.log x)

If y = x^y , prove that (dy)/(dx) = (y^2)/(x(1 - y log x))

"If "x^(y)=e^(x-y)," prove that "(dy)/(dx)=(log x)/((1+log x)^(2)).

"If "x^(y)=e^(x-y)," prove that "(dy)/(dx)=(log x)/((1+log x)^(2)).

If x^(y)=e^(x-y), prove that (dy)/(dx)=(log x)/((1+log x)^(2))

If x^(y)=e^(x-y), prove that (dy)/(dx)=(log x)/((1+log x)^(2))

If x^(y)=e^(x-y), Prove that (dy)/(dx)=(log x)/((1+log x)^(2))

if y=log x^(x) prove that (dy)/(dx)=1+log x

If y^(x)=e^(y-x)" prove that, " (dy)/(dx)=((logey)^(2))/(log y) .

If y^(x)=e^(y-x), prove that (dy)/(dx)=((1+log y)^(2))/(log y)