Home
Class 11
MATHS
If f: R -> R is a function such that f(x...

If `f: R -> R` is a function such that `f(x) = x^2 - 3x + 2`. Then find `f[f(x)]`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If f:R rarr R is a function such that f(x)=2^(x), find.(i) range of f( ii) (x:f(x)=1) (iii) f(x+y)=f(x)+f(y) is true or false.

Let f : R to R be a function such that f(x) = x^(3) + x^(2) f'(1) + xf''(2) + f'''(3), x in R . Then, f(2) equals

If f: R ->R is defined by f(x) = x^2- 3x + 2 , find f(f(x)) .

Let f :R to R be a function such that f(x) = x^3 + x^2 f' (0) + xf'' (2) , x in R Then f(1) equals:

If f : R to R be a function such that f(x)=x^(3)+x^(2)+3x +sinx, then discuss the nature of the function.

If f : R to R be a function such that f(x)=x^(3)+x^(2)+3x +sinx, then discuss the nature of the function.

If f : R to R be a function such that f(x)=x^(3)+x^(2)+3x +sinx, then discuss the nature of the function.

Let f:R to R be a function such that |f(x)|le x^(2),"for all" x in R. then at x=0, f is

If f: R->R is an odd function such that f(1+x)=1+f(x) and x^2f(1/x)=f(x),x!=0 then find f(x)dot