Home
Class 11
MATHS
" 19.Prove that "arg(z)+arg(bar(z))=0...

" 19.Prove that "arg(z)+arg(bar(z))=0

Promotional Banner

Similar Questions

Explore conceptually related problems

For any two complex numbers z1 and z2 ,prove that arg(z1.z2)=arg(z1)+arg(z2) .

if |z_(1)+z_(2)|=|z_(1)|+|z_(2)|, then prove that arg(z_(1))=arg(z_(2)) if |z_(1)-z_(2)|=|z_(1)|+|z_(2)| then prove that arg (z_(1))=arg(z_(2))=pi

Write the value of arg(z)+arg(bar(z))

If z, z_1 and z_2 are complex numbers, prove that (i) arg (barz) = - argz (ii) arg (z_1 z_2) = arg (z_1) + arg (z_2)

arg(bar(z))=-arg(z)

If z=1+i sqrt(3), then |arg(z)|+|arg(bar(z))| equals to

The value of sqrt({arg(z)+arg(-bar(z))-2 pi}{arg(-z)+arg(bar(z))})AA z=x+iy,x,y>0 is

Fill in the blanks. arg (z) + arg bar(z) " where " , (bar(z) ne 0) is …..

Fill in the blanks. arg (z) + arg bar(z) " where " , (bar(z) ne 0) is …..