Home
Class 11
MATHS
[" 4.If "L(m,n)=int(0)^(1)t^(m)(1+t)^(n)...

[" 4.If "L(m,n)=int_(0)^(1)t^(m)(1+t)^(n)dt," then prove that "],[qquad L(m,n)=(2^(n))/(m+1)-(n)/(m+1)L(m+1,n-1)]

Promotional Banner

Similar Questions

Explore conceptually related problems

If L(m,n)=int_(0)^(1)t^(m)(1+t)^(n),dt , then prove that L(m,n)=(2^(n))/(m+1)-n/(m+1)L(m+1,n-1)

If L(m,n)=int_(0)^(1)t^(m)(1+t)^(n),dt , then prove that L(m,n)=(2^(n))/(m+1)-n/(m+1)L(m+1,n-1)

If L(m,n)=int_(0)^(1)t^(m)(1+t)^(n),dt , then prove that L(m,n)=(2^(n))/(m+1)-n/(m+1)L(m+1,n-1)

If I(m,n)=int_(0)^(1)t^(m)(1+t)^(n).dt, then the expression for I(m,n) in terms of I(m+1,n-1) is:

If I(m,n) = int_0^1 t^m (1 + t)^n dt , m, n in R , then I(m, n) is :

If I(m,n)=int_0^1 t^m(1+t)^n.dt , then the expression for I(m,n) in terms of I(m+1,n-1) is:

If I(m,n)=int_0^1 t^m(1+t)^n.dt , then the expression for I(m,n) in terms of I(m+1,n-1) is:

If I(m,n)=int_0^1 t^m(1+t)^n.dt , then the expression for I(m,n) in terms of I(m+1,n-1) is:

If l_(m,n)=intx^(m)cosnxdx, then prove that l_(m,n)=(x^(m)sinnx)/(n)+(mx^(m-1)cosnx)/(n^(2))-(m(m-1))/(n^(2))l_(m-2,n)

If I(m,n)=int_0^1 t^m(1+t)^n.dt , then the expression for I(m,n) in terms of I(m+1,n-1) is: (a) (2^(n))/(m+1)-n/(m+1)I(m+1,n-1) (b) n/(m+1)I(m+1,n-1) (c) (2^(n))/(m+1)+n/(m+1)I(m+1,n-1) (d) m/(m+1)I(m+1,n-1)