Home
Class 11
MATHS
" 14."(cos^(4)x+sin^(4)x)=(1)/(2)(2-sin^...

" 14."(cos^(4)x+sin^(4)x)=(1)/(2)(2-sin^(2)2x)

Promotional Banner

Similar Questions

Explore conceptually related problems

cos^(4)x+sin^(4)x=(1)/(2)(1+2a^(2)-a^(4)) wherea =sin x+cos x

If (cos ^ (4) x) / (cos ^ (2) y) + (sin ^ (4) x) / (sin ^ (2) y) = 1 then prove that (cos ^ (4) y) / (cos ^ (2) x) + (sin ^ (4) y) / (sin ^ (2) x) = 1

sin^(4)x+cos^(4)x=1-2sin^(2)x cos^(2)x

If (cos^(4)x)/(cos^(2)y)+(sin^(4)x)/(sin^(2)y)=1 , then (cos^(4)y)/(cos^(2)x)+(sin^(4)y)/(sin^(2)y) equal :

Solev (sin^(2) 2x+4 sin^(4) x-4 sin^(2) x cos^(2) x)/(4-sin^(2) 2x-4 sin^(2) x)=1/9 .

Solve (sin^(2) 2x+4 sin^(4) x-4 sin^(2) x cos^(2) x)/(4-sin^(2) 2x-4 sin^(2) x)=1/9 .

Prove that, cos^(4)x + sin^(4)x = 1/2 (1 + 2 a^(2) - a^(4)) Where a = sin x + cos x

Prove that, sin^(4) x + cos^(4) x = 1- 1/2 sin^(2) 2x

The value of (cos^(4)x+cos^(2)x sin^(2) x + sin^(2)x)/(cos^(2)x+ sin^(2) x cos^(2) x + sin^(4)x) is ____________

prove that: sin ^ (4) x + cos ^ (4) x = 1- (1) / (2) sin ^ (2) 2x