Home
Class 10
MATHS
" (i) "cosec^(2)67^(9)=tan^(2)23^(@)...

" (i) "cosec^(2)67^(9)=tan^(2)23^(@)

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate : (sec^(2)theta-cot^(2)(90^(@)-theta))/("cosec"^(2)67^(@)-tan^(2)23^(2))+(sin^(2)40^(@)+sin^(2)50^(@))

Evaluate : (sec^(2)theta-cot^(2)(90^(@)-theta))/("cosec"^(2)67^(@)-tan^(2)23^(2))+(sin^(2)40^(@)+sin^(2)50^(@))

Evaluate "cosec"^(2)57^(@)-tan^(2)33^(@) .

Evaluate "cosec"^(2)57^(@)-tan^(2)33^(@) .

What is the value of (tan 9^(@) tan 23^(@) tan 60^(@) tan67^(@) tan 81^(@))/("cosec"^(2)72^(@)+cos^(2)15^(@)-tan^(2)18^(@)+cos^(2)75^(@))? (a) (1)/(2 sqrt(3)) (b) (sqrt(3))/(2) (c) (1)/(sqrt(3)) (d) 2 sqrt(3)

The value of tan^(2)48^(@)-cosec^(2)42^(@)+cosec(67^(@)+theta)-sec(23^(@)-theta) is :

( Sec^2 theta - cot ^2 (90 - theta))/( cosec ^2 67^@ - tan ^2 23^@) + sin ^2 40 ^@ + sin ^2 50^@ is equal to

Without using Trigonometric Tables evaluate the following :- (cosec^2 67^@-tan^2 23^@)/(sin^2 17^@+sin^2 73^@)+(sin59^@)/(cos31^@) .

The value of the determinant Delta=|{:(sin^(2)23^(@)" "sin^(2)67^(@)" "cos180^(@)),(-sin^(2)67^(@)" "-sin^(2)23^(@)" "-cos180^(@)),(cos180^(@)" "sin^(2)23^(@)" "sin^(2)67^(@)):}| is