Home
Class 12
MATHS
inta^(x) (ln x + ln a. ln ((x)/(e))^(x))...

`inta^(x) (ln x + ln a. ln ((x)/(e))^(x))dx=`

A

`a ^(x) ln((e)/(x ))^(2x) +C`

B

`a ^(x) ln ((x)/(e ))^(x) +C`

C

`a ^(x)+ ln ((x)/(e ))^(x) +C`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int a^x \left( \ln x + \ln a \cdot \ln \left( \frac{x}{e} \right)^x \right) dx \), we can follow these steps: ### Step 1: Simplify the integrand We start with the expression inside the integral: \[ \ln x + \ln a \cdot \ln \left( \frac{x}{e} \right)^x \] Using the properties of logarithms, we can rewrite \( \ln \left( \frac{x}{e} \right)^x \) as: \[ \ln \left( \frac{x}{e} \right)^x = x \cdot \ln \left( \frac{x}{e} \right) = x \cdot (\ln x - \ln e) = x \cdot (\ln x - 1) \] Thus, we can rewrite the integrand as: \[ \ln x + \ln a \cdot x \cdot (\ln x - 1) \] This simplifies to: \[ \ln x + \ln a \cdot x \cdot \ln x - \ln a \cdot x \] Combining terms gives us: \[ (1 + \ln a \cdot x) \ln x - \ln a \cdot x \] ### Step 2: Set up the integral Now we can rewrite the integral: \[ \int a^x \left( (1 + \ln a \cdot x) \ln x - \ln a \cdot x \right) dx \] This can be split into two separate integrals: \[ \int a^x (1 + \ln a \cdot x) \ln x \, dx - \ln a \int a^x x \, dx \] ### Step 3: Solve the first integral using integration by parts Let: - \( u = \ln x \) and \( dv = a^x (1 + \ln a \cdot x) dx \) Then we differentiate and integrate: - \( du = \frac{1}{x} dx \) - \( v = \frac{a^x}{\ln a} (1 + \ln a \cdot x) \) Using integration by parts: \[ \int u \, dv = uv - \int v \, du \] We can compute: \[ \int \ln x \cdot a^x (1 + \ln a \cdot x) dx = \frac{\ln x \cdot a^x}{\ln a} (1 + \ln a \cdot x) - \int \frac{a^x}{\ln a} (1 + \ln a \cdot x) \cdot \frac{1}{x} dx \] ### Step 4: Solve the second integral The second integral \( \int a^x x \, dx \) can also be solved using integration by parts: Let: - \( u = x \) and \( dv = a^x dx \) Then: - \( du = dx \) - \( v = \frac{a^x}{\ln a} \) Thus: \[ \int x a^x dx = x \cdot \frac{a^x}{\ln a} - \int \frac{a^x}{\ln a} dx \] The integral \( \int a^x dx = \frac{a^x}{\ln a} \). ### Step 5: Combine results After solving both integrals, we combine the results: \[ \int a^x \left( (1 + \ln a \cdot x) \ln x - \ln a \cdot x \right) dx = \text{(result from first integral)} - \ln a \cdot \left( x \cdot \frac{a^x}{\ln a} - \frac{a^x}{(\ln a)^2} \right) + C \] ### Final Result The final result will be: \[ \int a^x \left( \ln x + \ln a \cdot \ln \left( \frac{x}{e} \right)^x \right) dx = \text{(combined result)} + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK)|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|16 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK)|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|17 Videos
  • HYPERBOLA

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise-4 : Subjective Type Problems|3 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise-5 : Subjective Type Problems|6 Videos

Similar Questions

Explore conceptually related problems

int e^(ln x)dx

int (e^(a) ln x+e^(x ln a)) dx

The value of the definate integral int_(e)^(e^(sint10))(1)/(x)(1+(1-ln x)/(ln x ln((x)/(ln x))))dx, equals

int e^(x log a)dx

int(e^(log x))/(x)dx=

int _(1) ^(e ) (dx )/(ln (x ^(x) e ^(x)))

int e^(x ln a)*e^(x)dx

int e^(x^(2)+ln x)dx

int((log _(e)x)^(3))/(x)dx

lim_ (x rarr e) (ln x) ^ ((1) / (ln ((e) / (x))))

VIKAS GUPTA (BLACK BOOK)-INDEFINITE AND DEFINITE INTEGRATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. inta^(x) (ln x + ln a. ln ((x)/(e))^(x))dx=

    Text Solution

    |

  2. int (x+ ( cos^(-1)3x )^(2))/(sqrt(1-9x ^(2)))dx = (1)/(k (1)) ( sqrt(1...

    Text Solution

    |

  3. If int (0)^(oo) (x ^(3))/((a ^(2)+ x ^(2)))dx = (1)/(ka ^(6)), then fi...

    Text Solution

    |

  4. Let f (x) = x cos x, x in [(3pi)/(2), 2pi] and g (x) be its inverse. ...

    Text Solution

    |

  5. If int (x ^(6) +x ^(4)+x^(2)) sqrt(2x ^(4) +3x ^(2)+6) dx = ((ax ^(6) ...

    Text Solution

    |

  6. If the value of the definite integral int ^(-1) ^(1) cos ^(-1) ((1)/(s...

    Text Solution

    |

  7. The value of int (tan x )/(tan ^(2) x + tan x+1)dx =x -(2)/(sqrtA) tan...

    Text Solution

    |

  8. Let int (0)^(1) (4x ^(3) (1+(x ^(4)) ^(2010)))/((1+x^(4))^(2012))dx = ...

    Text Solution

    |

  9. Let int ( 1) ^(sqrt5)(x ^(2x ^(2)+1) +ln "("x ^(2x ^(2x ^(2+1)))")")dx...

    Text Solution

    |

  10. If int (dx )/(cos ^(3) x-sin ^(3))=A tan ^(-1) (f (x)) +bln |(sqrt2+f ...

    Text Solution

    |

  11. Find the value of |a| for which the area of triangle included between ...

    Text Solution

    |

  12. Let I = int (0) ^(pi) x ^(6) (pi-x) ^(8)dx, then (pi ^(15))/((""^(15) ...

    Text Solution

    |

  13. If maximum value of int (0)^(1) (f (x ))^(2) dx under the condition -1...

    Text Solution

    |

  14. Let a differentiable function f (x) satisfies f (x). F '(-x) . F'(x) a...

    Text Solution

    |

  15. If {x} denotes the fractional part of x, then I = int (0) ^(100) (sqrt...

    Text Solution

    |

  16. Let I(n) = int (0)^(pi) (sin (n + (1)/(2))x )/(sin ((x)/(2)))dx where ...

    Text Solution

    |

  17. IF M be the maximum valur of 72 int (0) ^(y) sqrt(x ^(4) +(y-y^(2))^(2...

    Text Solution

    |

  18. Find the number points where f (theta) = int (-1)^(1) (sin theta dx )/...

    Text Solution

    |

  19. underset(nrarroo)lim[(1)/(sqrtn)+(1)/(sqrt(2n))+(1)/(sqrt(3n))+...+(1)...

    Text Solution

    |

  20. The maximum value of int (-pi//2) ^(2pi//2) sin x. f (x) dx, subject t...

    Text Solution

    |

  21. Given a funtion g, continous everywhere such that g (1)=5 and int (0)^...

    Text Solution

    |