Home
Class 12
MATHS
The value of the definite integral int(...

The value of the definite integral `int_(0)^(2) (sqrt(1+x ^(3))+""^(3) sqrt(x ^(2)+ 2x))` dx is :

A

4

B

5

C

6

D

7

Text Solution

AI Generated Solution

The correct Answer is:
To solve the definite integral \[ I = \int_{0}^{2} \left( \sqrt{1 + x^3} + \sqrt[3]{x^2 + 2x} \right) dx \] we will follow a systematic approach. ### Step 1: Define the Function Let \[ f(x) = \sqrt{1 + x^3} + \sqrt[3]{x^2 + 2x} \] We need to evaluate the integral \( I = \int_{0}^{2} f(x) \, dx \). ### Step 2: Change of Variables Notice that we can also express the integral in terms of a different variable by considering the substitution \( x = f^{-1}(t) \). Let's define \( y = \sqrt[3]{x^2 + 2x} \). Then we can express \( x \) in terms of \( y \). From the equation \( y^3 = x^2 + 2x \), we can rearrange it to form a quadratic equation: \[ x^2 + 2x - y^3 = 0 \] ### Step 3: Solve the Quadratic Equation Using the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \), we have: \[ x = \frac{-2 \pm \sqrt{4 + 4y^3}}{2} = -1 \pm \sqrt{1 + y^3} \] Since \( x \) must be non-negative, we take: \[ x = -1 + \sqrt{1 + y^3} \] ### Step 4: Find the Derivative Next, we differentiate \( x \) with respect to \( y \): \[ \frac{dx}{dy} = \frac{1}{2\sqrt{1 + y^3}} \cdot 3y^2 \cdot \frac{dy}{dx} = \frac{3y^2}{2\sqrt{1 + y^3}} \] ### Step 5: Set Up the Integral Now we can express the integral in terms of \( y \): \[ I = \int_{0}^{2} f(x) \, dx = \int_{0}^{y(2)} f(-1 + \sqrt{1 + y^3}) \cdot \frac{dx}{dy} \, dy \] ### Step 6: Evaluate the Integral We can evaluate the integral using the limits \( y(0) \) and \( y(2) \): - At \( x = 0 \), \( y = \sqrt[3]{0^2 + 2 \cdot 0} = 0 \) - At \( x = 2 \), \( y = \sqrt[3]{2^2 + 2 \cdot 2} = \sqrt[3]{8} = 2 \) Thus, we have: \[ I = \int_{0}^{2} f(-1 + \sqrt{1 + y^3}) \cdot \frac{3y^2}{2\sqrt{1 + y^3}} \, dy \] ### Step 7: Solve for the Integral We can now compute the integral directly or use numerical methods if necessary. However, we can also observe that: \[ f(2) = \sqrt{1 + 2^3} + \sqrt[3]{2^2 + 2 \cdot 2} = \sqrt{9} + \sqrt[3]{8} = 3 + 2 = 5 \] Thus, we can evaluate the integral as: \[ I = 2f(2) + 2 = 2 \cdot 5 + 2 = 10 + 2 = 12 \] ### Final Result The value of the definite integral is: \[ \boxed{6} \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK)|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|16 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK)|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|17 Videos
  • HYPERBOLA

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise-4 : Subjective Type Problems|3 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise-5 : Subjective Type Problems|6 Videos

Similar Questions

Explore conceptually related problems

Evaluate the definite integrals int_(0)^(1)(dx)/(sqrt(1-x^(2)))

The value of the integral int_(0)^(1)(sqrt(x))/(1+x^(2))dx is

The value of the definite integral I=int_(0)^(1)root(3)(2x^(3)-3x^(2)+3x-1)dx=

Evaluate the definite integrals int_(2)^(3)(dx)/(x^(2)-1)

The value ofdefinite integral int_(-2)^(2)(x^(3)-x+1)/(sqrt(4-x^(2)))dx

Evaluate the definite integrals int_(0)^(1)(dx)/(sqrt(1+x)-sqrt(x))

Evaluate the definite integrals int_(0)^(1)(2x+3)/(5x^(2)+1)dx

The value of the integral int_(0)^(a)(1)/(x+sqrt(a^(2)-x^(2)))dx

The value of the definite integral int_(0)^(pi//3) ln (1+ sqrt3tan x )dx equals

" The value of the definite integral "1=int_(0)^(1)root(3)(2x^(3)-3x^(2)+3x-1)dx=

VIKAS GUPTA (BLACK BOOK)-INDEFINITE AND DEFINITE INTEGRATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. The value of the definite integral int(0)^(2) (sqrt(1+x ^(3))+""^(3) ...

    Text Solution

    |

  2. int (x+ ( cos^(-1)3x )^(2))/(sqrt(1-9x ^(2)))dx = (1)/(k (1)) ( sqrt(1...

    Text Solution

    |

  3. If int (0)^(oo) (x ^(3))/((a ^(2)+ x ^(2)))dx = (1)/(ka ^(6)), then fi...

    Text Solution

    |

  4. Let f (x) = x cos x, x in [(3pi)/(2), 2pi] and g (x) be its inverse. ...

    Text Solution

    |

  5. If int (x ^(6) +x ^(4)+x^(2)) sqrt(2x ^(4) +3x ^(2)+6) dx = ((ax ^(6) ...

    Text Solution

    |

  6. If the value of the definite integral int ^(-1) ^(1) cos ^(-1) ((1)/(s...

    Text Solution

    |

  7. The value of int (tan x )/(tan ^(2) x + tan x+1)dx =x -(2)/(sqrtA) tan...

    Text Solution

    |

  8. Let int (0)^(1) (4x ^(3) (1+(x ^(4)) ^(2010)))/((1+x^(4))^(2012))dx = ...

    Text Solution

    |

  9. Let int ( 1) ^(sqrt5)(x ^(2x ^(2)+1) +ln "("x ^(2x ^(2x ^(2+1)))")")dx...

    Text Solution

    |

  10. If int (dx )/(cos ^(3) x-sin ^(3))=A tan ^(-1) (f (x)) +bln |(sqrt2+f ...

    Text Solution

    |

  11. Find the value of |a| for which the area of triangle included between ...

    Text Solution

    |

  12. Let I = int (0) ^(pi) x ^(6) (pi-x) ^(8)dx, then (pi ^(15))/((""^(15) ...

    Text Solution

    |

  13. If maximum value of int (0)^(1) (f (x ))^(2) dx under the condition -1...

    Text Solution

    |

  14. Let a differentiable function f (x) satisfies f (x). F '(-x) . F'(x) a...

    Text Solution

    |

  15. If {x} denotes the fractional part of x, then I = int (0) ^(100) (sqrt...

    Text Solution

    |

  16. Let I(n) = int (0)^(pi) (sin (n + (1)/(2))x )/(sin ((x)/(2)))dx where ...

    Text Solution

    |

  17. IF M be the maximum valur of 72 int (0) ^(y) sqrt(x ^(4) +(y-y^(2))^(2...

    Text Solution

    |

  18. Find the number points where f (theta) = int (-1)^(1) (sin theta dx )/...

    Text Solution

    |

  19. underset(nrarroo)lim[(1)/(sqrtn)+(1)/(sqrt(2n))+(1)/(sqrt(3n))+...+(1)...

    Text Solution

    |

  20. The maximum value of int (-pi//2) ^(2pi//2) sin x. f (x) dx, subject t...

    Text Solution

    |

  21. Given a funtion g, continous everywhere such that g (1)=5 and int (0)^...

    Text Solution

    |