Home
Class 12
MATHS
Let l (n) =int (-1) ^(1) |x|(1+ x+ (x ^(...

Let `l _(n) =int _(-1) ^(1) |x|(1+ x+ (x ^(2))/(2 ) +(x ^(2))/(3) + ..... + (x ^(2n))/(2n))dx if lim _(x to oo) l _(n) ` can be expressed as rational `p/q` in this lowest form, then find the value of `(pq(p+q))/(10)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integral \[ l_n = \int_{-1}^{1} |x| \left(1 + x + \frac{x^2}{2} + \frac{x^3}{3} + \ldots + \frac{x^{2n}}{2n}\right) dx \] and find the limit as \( n \to \infty \). ### Step 1: Simplifying the Integral The expression inside the integral is a series expansion. We can rewrite it as: \[ l_n = \int_{-1}^{1} |x| \left( \sum_{k=0}^{2n} \frac{x^k}{k} \right) dx \] ### Step 2: Understanding the Even and Odd Functions Since \( |x| \) is an even function and the series contains both even and odd powers of \( x \), we can separate the integral into two parts. The odd powers will integrate to zero over the symmetric interval \([-1, 1]\). Thus, we only need to consider the even powers: \[ l_n = 2 \int_{0}^{1} x \left( 1 + \frac{x^2}{2} + \frac{x^4}{4} + \ldots + \frac{x^{2n}}{2n} \right) dx \] ### Step 3: Evaluating the Integral Now we can focus on the integral: \[ l_n = 2 \int_{0}^{1} x \left( 1 + \frac{x^2}{2} + \frac{x^4}{4} + \ldots + \frac{x^{2n}}{2n} \right) dx \] This can be expressed as: \[ = 2 \left( \int_{0}^{1} x dx + \frac{1}{2} \int_{0}^{1} x^3 dx + \frac{1}{4} \int_{0}^{1} x^5 dx + \ldots + \frac{1}{2n} \int_{0}^{1} x^{2n+1} dx \right) \] ### Step 4: Calculating Each Integral The integral \( \int_{0}^{1} x^k dx = \frac{1}{k+1} \). Therefore, we have: \[ \int_{0}^{1} x^{2k+1} dx = \frac{1}{2k+2} \] Substituting this back into our expression gives: \[ l_n = 2 \left( 1 + \frac{1}{2(3)} + \frac{1}{4(5)} + \ldots + \frac{1}{2n(2n+1)} \right) \] ### Step 5: Finding the Limit as \( n \to \infty \) As \( n \to \infty \), the series converges to: \[ \lim_{n \to \infty} l_n = 2 \left( 1 + \frac{1}{2} + \frac{1}{4} + \ldots \right) \] This series converges to: \[ = 2 \left( 1 + \frac{1}{2} + \frac{1}{4} + \ldots \right) = 2 \cdot 2 = 4 \] ### Step 6: Expressing in the Form \( \frac{p}{q} \) We have \( \lim_{n \to \infty} l_n = \frac{4}{1} \). Here, \( p = 4 \) and \( q = 1 \). ### Step 7: Finding \( \frac{pq(p+q)}{10} \) Now we calculate: \[ pq(p + q) = 4 \cdot 1 \cdot (4 + 1) = 4 \cdot 1 \cdot 5 = 20 \] Finally, we find: \[ \frac{pq(p + q)}{10} = \frac{20}{10} = 2 \] ### Final Answer Thus, the answer is: \[ \boxed{2} \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK)|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|17 Videos
  • HYPERBOLA

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise-4 : Subjective Type Problems|3 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise-5 : Subjective Type Problems|6 Videos

Similar Questions

Explore conceptually related problems

I_(n)=int_(-1)^(1)|x|(1+x+(x^(2))/(2)+(x^(3))/(3)+....+(x^(2n))/(2n))dx where n in N. If lim_(n rarr oo)I_(n) can be expressed as a ration number (p)/(q) in the lowest form,then find the value of p+q

If lim_(n rarr oo)sum_(k=1)^(n)(k^(2)+k)/(n^(3)+k) can be expressed as rational (p)/(q) in the lowest form then the value of (p+q), is

Let P_(n)=prod_(k=2)^(n)(1-(1)/((k+1)C_(2))). If lim_(n rarr oo)P_(n) can be expressed as lowest rational in the form (a)/(b), find the value of (a+b)

lim_(x rarr oo)(a(2x^(3)-x^(2))+b(x^(3)+5x^(2)-1)-c(3x^(3)+x^(2)))/(2(5x^(4)-x)-bx^(4)+c(4x^(4)+1)+2x^(2)+5x)=1 then the value of a+b+c can be expressed in the lowest form as (p)/(q) find the value of p+q

Evaluate l_(n)= int (dx)/((x^(2)+a^(2))^(n)) .

Let f(x)=(2x-pi)^(3)+2x-cos x .If the value of (d)/(dx)(f^(-1) (x)) at x=pi can be expressed in the form of (p)/(q) ( where p and q are natural numbers in their lowest form), then the value of (p+q) is

If the value of lim_(x->0)( ((3/ x)+1)/((3/x)-1))^(1/x) can be expressed in the form of e^(p/q), where p and q are relative prime then find the value of (p+q) .

Let f(x)=lim_(n to oo) ((2 sin x)^(2n))/(3^(n)-(2 cos x)^(2n)), n in Z . Then

VIKAS GUPTA (BLACK BOOK)-INDEFINITE AND DEFINITE INTEGRATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. Find the value of |a| for which the area of triangle included between ...

    Text Solution

    |

  2. Let I = int (0) ^(pi) x ^(6) (pi-x) ^(8)dx, then (pi ^(15))/((""^(15) ...

    Text Solution

    |

  3. If maximum value of int (0)^(1) (f (x ))^(2) dx under the condition -1...

    Text Solution

    |

  4. Let a differentiable function f (x) satisfies f (x). F '(-x) . F'(x) a...

    Text Solution

    |

  5. If {x} denotes the fractional part of x, then I = int (0) ^(100) (sqrt...

    Text Solution

    |

  6. Let I(n) = int (0)^(pi) (sin (n + (1)/(2))x )/(sin ((x)/(2)))dx where ...

    Text Solution

    |

  7. IF M be the maximum valur of 72 int (0) ^(y) sqrt(x ^(4) +(y-y^(2))^(2...

    Text Solution

    |

  8. Find the number points where f (theta) = int (-1)^(1) (sin theta dx )/...

    Text Solution

    |

  9. underset(nrarroo)lim[(1)/(sqrtn)+(1)/(sqrt(2n))+(1)/(sqrt(3n))+...+(1)...

    Text Solution

    |

  10. The maximum value of int (-pi//2) ^(2pi//2) sin x. f (x) dx, subject t...

    Text Solution

    |

  11. Given a funtion g, continous everywhere such that g (1)=5 and int (0)^...

    Text Solution

    |

  12. If f (n)= 1/pi int (0) ^(pi//2) (sin ^(2) (n theta) d theta)/(sin ^(2)...

    Text Solution

    |

  13. Let f (2-x) =f (2+xand f (4-x )= f (4+x). Function f (x) satisfies int...

    Text Solution

    |

  14. Let l (n) =int (-1) ^(1) |x|(1+ x+ (x ^(2))/(2 ) +(x ^(2))/(3) + ........

    Text Solution

    |

  15. Let lim ( x to oo) n ^((1)/(2 )(1+(1 )/(n))). (1 ^(1) . 2 ^(2) . 3 ^(3...

    Text Solution

    |

  16. If int (a )^(b) |sin x |dx =8 and int (0)^(a+b) |cos x| dx=9 then the ...

    Text Solution

    |

  17. If f(x),g(x),h(x) and phi(x) are polynomial in x, (int1^x f(x) h(x) dx...

    Text Solution

    |

  18. If int (0)^(2)(3x ^(2) -3x +1) cos (x ^(2) -3x ^(2)+4x -2) dx = a sin ...

    Text Solution

    |

  19. let f (x) = int (0) ^(x) e ^(x-y) f'(y) dy - (x ^(2) -x+1)e ^(x) Fin...

    Text Solution

    |

  20. For a positive integer n, let I (n) =int (-pi)^(pi) ((pi)/(2) -|x|) co...

    Text Solution

    |