Home
Class 12
MATHS
let f (x) = int (0) ^(x) e ^(x-y) f'(y) ...

let `f (x) = int _(0) ^(x) e ^(x-y) f'(y) dy - (x ^(2) -x+1)e ^(x)`
Find the number of roots of the equation `f (x) =0.`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the number of roots of the equation \( f(x) = 0 \) where \[ f(x) = \int_0^x e^{x-y} f'(y) \, dy - (x^2 - x + 1)e^x. \] ### Step 1: Set up the equation We start by setting \( f(x) = 0 \): \[ 0 = \int_0^x e^{x-y} f'(y) \, dy - (x^2 - x + 1)e^x. \] Rearranging gives us: \[ \int_0^x e^{x-y} f'(y) \, dy = (x^2 - x + 1)e^x. \] ### Step 2: Factor out \( e^x \) Since \( e^{x-y} = e^x e^{-y} \), we can factor \( e^x \) out of the integral: \[ \int_0^x e^{x-y} f'(y) \, dy = e^x \int_0^x e^{-y} f'(y) \, dy. \] Thus, we can rewrite our equation as: \[ e^x \int_0^x e^{-y} f'(y) \, dy = (x^2 - x + 1)e^x. \] ### Step 3: Cancel \( e^x \) Since \( e^x \) is never zero, we can safely divide both sides by \( e^x \): \[ \int_0^x e^{-y} f'(y) \, dy = x^2 - x + 1. \] ### Step 4: Differentiate both sides Now we differentiate both sides with respect to \( x \): Using the Fundamental Theorem of Calculus on the left side, we get: \[ e^{-x} f'(x) = 2x - 1. \] ### Step 5: Solve for \( f'(x) \) Multiplying both sides by \( e^x \) gives us: \[ f'(x) = (2x - 1)e^x. \] ### Step 6: Integrate to find \( f(x) \) Now we integrate \( f'(x) \): \[ f(x) = \int (2x - 1)e^x \, dx. \] Using integration by parts, let \( u = 2x - 1 \) and \( dv = e^x \, dx \): \[ du = 2 \, dx, \quad v = e^x. \] Thus, \[ f(x) = (2x - 1)e^x - \int 2e^x \, dx = (2x - 1)e^x - 2e^x + C, \] where \( C \) is the constant of integration. Simplifying gives: \[ f(x) = (2x - 3)e^x + C. \] ### Step 7: Find \( f(0) \) To find \( C \), we evaluate \( f(0) \): \[ f(0) = (2(0) - 3)e^0 + C = -3 + C. \] ### Step 8: Set \( f(0) \) in the original equation From our earlier work, we know \( f(0) = -1 \): \[ -3 + C = -1 \implies C = 2. \] ### Step 9: Final form of \( f(x) \) Thus, we have: \[ f(x) = (2x - 3)e^x + 2. \] ### Step 10: Set \( f(x) = 0 \) Now we set \( f(x) = 0 \): \[ (2x - 3)e^x + 2 = 0. \] Rearranging gives: \[ (2x - 3)e^x = -2. \] Since \( e^x > 0 \) for all \( x \), the left side is positive for \( x > \frac{3}{2} \) and negative for \( x < \frac{3}{2} \). Thus, we need to find where: \[ 2x - 3 = -\frac{2}{e^x}. \] ### Step 11: Analyze the function The left side \( 2x - 3 \) is a linear function that crosses zero at \( x = \frac{3}{2} \). The right side \( -\frac{2}{e^x} \) is always negative. ### Step 12: Finding the roots The function \( f(x) \) will cross the x-axis at two points: one before \( x = \frac{3}{2} \) and one after. Thus, we conclude that there are **two roots** for the equation \( f(x) = 0 \). ### Conclusion The number of roots of the equation \( f(x) = 0 \) is **2**.
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK)|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|17 Videos
  • HYPERBOLA

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise-4 : Subjective Type Problems|3 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise-5 : Subjective Type Problems|6 Videos

Similar Questions

Explore conceptually related problems

If f(x) =x + int_(0)^(1) (xy^(2)+x^(2)y)(f(y)) dy, "find" f(x) if x and y are independent.

Let f(x)=int_(0)^(x)(e^(t))/(t)dt(xgt0), then e^(-a)[f(x+1)-f(1+a)]=

Let f(x)=(e^(x)x cos x-x log_(e)(1+x)-x)/(x^(2)),x!=0 If f(x) is continuous at x=0, then f(0) is equal to

Let y=f(x) is a solution of differential equation e^(y)((dy)/(dx)-1)=e^(x) and f(0)=0 then f(1) is equal to

I=int_(0)^(2)(e^(f(x)))/(e^(f(x))+e^(f(2-x)))dx is equal to

VIKAS GUPTA (BLACK BOOK)-INDEFINITE AND DEFINITE INTEGRATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. Find the value of |a| for which the area of triangle included between ...

    Text Solution

    |

  2. Let I = int (0) ^(pi) x ^(6) (pi-x) ^(8)dx, then (pi ^(15))/((""^(15) ...

    Text Solution

    |

  3. If maximum value of int (0)^(1) (f (x ))^(2) dx under the condition -1...

    Text Solution

    |

  4. Let a differentiable function f (x) satisfies f (x). F '(-x) . F'(x) a...

    Text Solution

    |

  5. If {x} denotes the fractional part of x, then I = int (0) ^(100) (sqrt...

    Text Solution

    |

  6. Let I(n) = int (0)^(pi) (sin (n + (1)/(2))x )/(sin ((x)/(2)))dx where ...

    Text Solution

    |

  7. IF M be the maximum valur of 72 int (0) ^(y) sqrt(x ^(4) +(y-y^(2))^(2...

    Text Solution

    |

  8. Find the number points where f (theta) = int (-1)^(1) (sin theta dx )/...

    Text Solution

    |

  9. underset(nrarroo)lim[(1)/(sqrtn)+(1)/(sqrt(2n))+(1)/(sqrt(3n))+...+(1)...

    Text Solution

    |

  10. The maximum value of int (-pi//2) ^(2pi//2) sin x. f (x) dx, subject t...

    Text Solution

    |

  11. Given a funtion g, continous everywhere such that g (1)=5 and int (0)^...

    Text Solution

    |

  12. If f (n)= 1/pi int (0) ^(pi//2) (sin ^(2) (n theta) d theta)/(sin ^(2)...

    Text Solution

    |

  13. Let f (2-x) =f (2+xand f (4-x )= f (4+x). Function f (x) satisfies int...

    Text Solution

    |

  14. Let l (n) =int (-1) ^(1) |x|(1+ x+ (x ^(2))/(2 ) +(x ^(2))/(3) + ........

    Text Solution

    |

  15. Let lim ( x to oo) n ^((1)/(2 )(1+(1 )/(n))). (1 ^(1) . 2 ^(2) . 3 ^(3...

    Text Solution

    |

  16. If int (a )^(b) |sin x |dx =8 and int (0)^(a+b) |cos x| dx=9 then the ...

    Text Solution

    |

  17. If f(x),g(x),h(x) and phi(x) are polynomial in x, (int1^x f(x) h(x) dx...

    Text Solution

    |

  18. If int (0)^(2)(3x ^(2) -3x +1) cos (x ^(2) -3x ^(2)+4x -2) dx = a sin ...

    Text Solution

    |

  19. let f (x) = int (0) ^(x) e ^(x-y) f'(y) dy - (x ^(2) -x+1)e ^(x) Fin...

    Text Solution

    |

  20. For a positive integer n, let I (n) =int (-pi)^(pi) ((pi)/(2) -|x|) co...

    Text Solution

    |