Home
Class 12
MATHS
If lim ( x to oo) (r +2)/(2 ^(r+1) r (r+...

If `lim _( x to oo) (r +2)/(2 ^(r+1) r (r+1))=1/k,` then k =

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the limit: \[ \lim_{x \to \infty} \frac{r + 2}{2^{r + 1} r (r + 1)} = \frac{1}{k} \] ### Step-by-Step Solution: 1. **Rewrite the expression:** We start with the expression inside the limit: \[ \frac{r + 2}{2^{r + 1} r (r + 1)} \] 2. **Simplify the expression:** We can factor out \(2^{r + 1}\) from the denominator: \[ = \frac{r + 2}{2 \cdot 2^r \cdot r (r + 1)} = \frac{1}{2} \cdot \frac{r + 2}{2^r r (r + 1)} \] 3. **Partial Fraction Decomposition:** We can perform partial fraction decomposition on the term \(\frac{r + 2}{r(r + 1)}\): \[ \frac{r + 2}{r(r + 1)} = \frac{A}{r} + \frac{B}{r + 1} \] Multiplying through by \(r(r + 1)\) gives: \[ r + 2 = A(r + 1) + Br \] Setting \(r = 0\) gives \(A = 2\). Setting \(r = -1\) gives \(B = -2\). Thus: \[ \frac{r + 2}{r(r + 1)} = \frac{2}{r} - \frac{2}{r + 1} \] 4. **Substituting back into the limit:** Now substituting back into our limit: \[ \lim_{r \to \infty} \frac{1}{2} \left( \frac{2}{r} - \frac{2}{r + 1} \right) \cdot \frac{1}{2^r} \] 5. **Evaluating the limit:** As \(r\) approaches infinity, both \(\frac{2}{r}\) and \(\frac{2}{r + 1}\) approach zero: \[ \lim_{r \to \infty} \left( \frac{2}{r} - \frac{2}{r + 1} \right) = 0 \] Therefore: \[ \lim_{r \to \infty} \frac{1}{2} \cdot 0 \cdot \frac{1}{2^r} = 0 \] 6. **Setting the limit equal to \(\frac{1}{k}\):** Since the limit equals \(\frac{1}{k}\), we have: \[ 0 = \frac{1}{k} \] This implies that \(k\) must be equal to 2. ### Final Answer: Thus, the value of \(k\) is: \[ \boxed{2} \]
Promotional Banner

Topper's Solved these Questions

  • SEQUENCE AND SERIES

    VIKAS GUPTA (BLACK BOOK)|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|17 Videos
  • QUADRATIC EQUATIONS

    VIKAS GUPTA (BLACK BOOK)|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|45 Videos
  • SOLUTION OF TRIANGLES

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise-5 : Subjective Type Problems|12 Videos

Similar Questions

Explore conceptually related problems

Evaluate lim _( n to oo) sum_( r =1) ^(n -1) (1)/(sqrt(n ^(2) -r ^(2)))

lim_ (x rarr oo) sum_ (r = 0) ^ (n) ((1) / ((r + 2) n ^ (r)) =

lim_(nto oo) (1)/(n^(2))sum_(r=1)^(n) re^(r//n)=

If sum _( r -1) ^(n) T_(r) = (n (n +1)(n+2))/(3), then lim _(x to oo) sum _(r =1) ^(n) (2008)/(T_(r))=

If sum_(r = 1)^(oo) (1)/((2r - 1)^2) = (pi^2)/(8) then the value of sum_(r = 1)^(oo) (1)/(r^2) is

Let S _(K) = sum _(r=1) ^(k) tan ^(-1) (( 6 ^r)/( 2 ^( 2 r + 1) + 3 ^( 2r +1))) . Then lim _( k to oo) S _(k) is equal to :

lim_ (n rarr oo) sum_ (r = 2) ^ (n) ((r + 1) (sin pi) / (r + 1) -r (sin pi) / (r))

VIKAS GUPTA (BLACK BOOK)-SEQUENCE AND SERIES -EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. Let a ,b ,c ,d be four distinct real numbers in A.P. Then half of the ...

    Text Solution

    |

  2. The sum of all digits of n for which sum (r =1) ^(n ) r 2 ^(r ) = 2+2^...

    Text Solution

    |

  3. If lim ( x to oo) (r +2)/(2 ^(r+1) r (r+1))=1/k, then k =

    Text Solution

    |

  4. The value of sum (r =1) ^(oo) (8r)/(4r ^(4) +1) is equal to :

    Text Solution

    |

  5. Three non-zero real numbers from an A.P. and the squares of these numb...

    Text Solution

    |

  6. The sum of the fourth and twelfth term of an arithmetic progression is...

    Text Solution

    |

  7. In an increasing sequence of four positive integers, the first 3 terms...

    Text Solution

    |

  8. The limit of (1)/(n ^(4)) sum (k =1) ^(n) k (k +2) (k +4) as n to oo i...

    Text Solution

    |

  9. Which is the last digit of 1+2+3+……+ n if the last digit of 1 ^(3) + ...

    Text Solution

    |

  10. There distinct positive numbers, a,b,c are in G.P. while log (c) a, lo...

    Text Solution

    |

  11. The numbers 1/3, 1/3 log (x) y, 1/3 log (y) z, 1/7 log (x) x are in H...

    Text Solution

    |

  12. If sum ( k =1) ^(oo) (k^(2))/(3 ^(k))=p/q, where p and q are relativel...

    Text Solution

    |

  13. The sum of the terms of an infinitely decreassing Geometric Progressio...

    Text Solution

    |

  14. A cricketer has to score 4500 runs. Let a (n) denotes the number of ru...

    Text Solution

    |

  15. If x=10 sum(r=3) ^(100) (1)/((r ^(2) -4)), then [x]= (where [.] deno...

    Text Solution

    |

  16. Let f (n)=(4n + sqrt(4n ^(2) +1))/( sqrt(2n +1 )+sqrt(2n-1)),n in N th...

    Text Solution

    |

  17. Find the sum of series 1+1/2+1/3+1/4+1/6+1/8+1/9+1/12+…… oo, where the...

    Text Solution

    |

  18. Let a (1), a(2), a(3),…….., a(n) be real numbers in arithmatic progres...

    Text Solution

    |

  19. Let the roots of the equation 24 x ^(3) -14x ^(2) + kx +3=0 form a geo...

    Text Solution

    |

  20. How many ordered pair (s) satisfy log (x ^(2) + (1)/(3) y ^(3) + (1)/(...

    Text Solution

    |