Home
Class 12
MATHS
Let log(3)N=alpha(1)+beta(1) log(5)N=...

Let `log_(3)N=alpha_(1)+beta_(1)`
`log_(5)N=alpha_(2)+beta_(2)`
`log_(7)N=alpha_(3)+beta_(3)`
where `alpha_(1), alpha_(2) and alpha_(3)` are integers and `beta_(1), beta_(2), beta_(3) in [0,1)`.
Q. Number of integral values of N if `alpha_(1)=4 and alpha_(2)=2`:

A

46

B

45

C

44

D

47

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise-5 : Subjective Type Problems|19 Videos
  • LOGARITHMS

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise-2 : One or More than One Answer is/are Correct|4 Videos
  • LIMIT

    VIKAS GUPTA (BLACK BOOK)|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos
  • MATRICES

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise-4 : Subjective Type Problems|5 Videos

Similar Questions

Explore conceptually related problems

Let log_(3)N=alpha_(1)+beta_(1) log_(5)N=alpha_(2)+beta_(2) log_(7)N=alpha_(3)+beta_(3) where alpha_(1), alpha_(2) and alpha_(3) are integers and beta_(1), beta_(2), beta_(3) in [0,1) . Q. Largest integral value of N if alpha_(1)=5, alpha_(2)=3 and alpha_(3)=2 .

Let log_(3)N=alpha_(1)+beta_(1) log_(5)N=alpha_(2)+beta_(2) log_(7)N=alpha_(3)+beta_(3) where alpha_(1), alpha_(2) and alpha_(3) are integers and beta_(1), beta_(2), beta_(3) in [0,1) . Q. Difference of largest and smallest values of N if alpha_(1)=5, alpha_(2)=3 and alpha_(3)=2 .

Let -(1)/(6) beta_(1) and alpha_(2)>beta_(2), then alpha_(1)+beta_(2) equals

Let log_3^N = alpha_1 + beta_1 , log_5^N = alpha_2 + beta_2 , log_7^N = alpha_3 + beta_3 Largest integral value of N if alpha_1 =5 , alpha_2 = 3 and alpha_3=2(A)342. (D) 242 (C) 243 (B) 343 342 17 Difference of largest and smallest integral values of N if alpha_1 =5 , alpha_2 = 3 and alpha_3=2 (D) 99 (C) 98 (B) 100 (A) 97

If the roots of a_(1)x^(2)+b_(1)x+c_(1)=0 are alpha_(1),beta_(1) and those of a_(2)x^(2)+b_(2)x+c_(2)=0 are alpha_(2),beta_(2) such that alpha_(1)alpha_(2)=beta_(1)beta_(2)=1 then

If Delta = |(cos (alpha_(1) - beta_(1)),cos (alpha_(1) - beta_(2)),cos (alpha_(1) - beta_(3))),(cos (alpha_(2) - beta_(1)),cos (alpha_(2) - beta_(2)),cos (alpha_(2) - beta_(3))),(cos (alpha_(3) - beta_(1)),cos (alpha_(3) - beta_(2)),cos (alpha_(3) - beta_(3)))|" then " Delta equals

Let alpha_(1),beta_(1) be the roots x^(2)-6x+p=0 and alpha_(2),beta_(2) be the roots x^(2)-54x+q=0 .If alpha_(1),beta_(1),alpha_(2),beta_(2) form an increasing G.P.then sum of the digits of the value of (q-p) is

If log_(12)18=alpha and log_(24)54=beta. Prove that alpha beta+5(alpha-beta)=1

If alpha1=beta but alpha^(2)=2 alpha-3;beta^(2)=2 beta-3 then the equation whose roots are (alpha)/(beta) and (beta)/(alpha) is