Home
Class 12
MATHS
Let alpha be a variable parameter, then ...

Let `alpha` be a variable parameter, then the length of the chord of the curve: `(x-sin^-1 alpha)(x-cos^-1 alpha)+(y-sin^-1 alpha)(y+cos^-1 alpha)=0` along the line `x=pi/4` can not be equal to

A

`(pi)/(3)`

B

`(pi)/(6)`

C

`(pi)/(4)`

D

`(pi)/(2)`

Text Solution

Verified by Experts

The correct Answer is:
A, B, C
Promotional Banner

Topper's Solved these Questions

  • CIRCLE

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise - 3 : Comprehension Type Problems|10 Videos
  • CIRCLE

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise - 5 : Subjective Type Problems|13 Videos
  • CIRCLE

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise - 5 : Subjective Type Problems|13 Videos
  • BIONMIAL THEOREM

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise-4 : Subjective Type Problems|15 Videos
  • COMPLEX NUMBERS

    VIKAS GUPTA (BLACK BOOK)|Exercise EXERCISE-5 : SUBJECTIVE TYPE PROBLEMS|8 Videos

Similar Questions

Explore conceptually related problems

cos (n + 1) alpha cos (n-1) alpha + sin (n + 1) alpha sin (n-1) alpha =

The length of the perpendicular from the origin on the line (x sin alpha)/(b ) - (y cos alpha)/(a )-1=0 is

If cos^(-1)sqrt(cos alpha)-sin^(-1)sqrt(cos alpha)=x, then the value of sin x is

Prove that: int_(0)^( pi)(x)/(1-cos alpha sin x)dx=(pi(pi-alpha))/(sin alpha)

If A=[(cos alpha, -sin alpha, 0),(sin alpha, cos alpha,0),(0,0,1)] then A^(-1) is

Let A_(alpha)=[[cos alpha,-sin alpha,osin alpha,cos alpha,00,0,1]]

The locus of the intersection point of x cos alpha+y sin alpha=a and x sin alpha-y cos alpha=b is

Find the length of perpendicular from the point (a cos alpha, a sin alpha) to the line x cos alpha+y sin alpha=p .