Home
Class 12
MATHS
If a="max"{(x+2)^(2)+(y-3)^(2)} and b="m...

If `a="max"{(x+2)^(2)+(y-3)^(2)} and b="min"{(x+2)^(2)+(y-3)^(2)}` where x, y satisfying `x^(2)+y^(2)+8x-10y-40=0` then :

A

`a+b=18`

B

`a+b=178`

C

`a-b=4sqrt(2)`

D

`a-b=72sqrt(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the maximum and minimum values of the expression \( (x+2)^2 + (y-3)^2 \) under the constraint given by the circle equation \( x^2 + y^2 + 8x - 10y - 40 = 0 \). ### Step-by-Step Solution: 1. **Rewrite the Circle Equation**: We start with the equation of the circle: \[ x^2 + y^2 + 8x - 10y - 40 = 0 \] We can complete the square for both \( x \) and \( y \): \[ (x^2 + 8x) + (y^2 - 10y) = 40 \] Completing the square: \[ (x + 4)^2 - 16 + (y - 5)^2 - 25 = 40 \] This simplifies to: \[ (x + 4)^2 + (y - 5)^2 = 81 \] Thus, the center of the circle is \( (-4, 5) \) and the radius is \( 9 \). 2. **Identify the Expression**: We need to maximize and minimize: \[ (x + 2)^2 + (y - 3)^2 \] This expression represents the square of the distance from the point \( (-2, 3) \) to any point \( (x, y) \) on the circle. 3. **Calculate the Distance from Center to Point**: We first find the distance from the center of the circle \( (-4, 5) \) to the point \( (-2, 3) \): \[ d = \sqrt{((-2) - (-4))^2 + ((3) - (5))^2} = \sqrt{(2)^2 + (-2)^2} = \sqrt{4 + 4} = \sqrt{8} = 2\sqrt{2} \] 4. **Determine Maximum and Minimum Distances**: The minimum distance from the point \( (-2, 3) \) to the circle is: \[ \text{Minimum distance} = d - \text{radius} = 2\sqrt{2} - 9 \] The maximum distance from the point \( (-2, 3) \) to the circle is: \[ \text{Maximum distance} = d + \text{radius} = 2\sqrt{2} + 9 \] 5. **Calculate \( a \) and \( b \)**: Since \( a \) is the maximum and \( b \) is the minimum of the expression \( (x + 2)^2 + (y - 3)^2 \): \[ a = (d + 9)^2 = (2\sqrt{2} + 9)^2 \] \[ b = (d - 9)^2 = (2\sqrt{2} - 9)^2 \] 6. **Expand \( a \) and \( b \)**: Expanding \( a \): \[ a = (2\sqrt{2} + 9)^2 = (2\sqrt{2})^2 + 2 \cdot 2\sqrt{2} \cdot 9 + 9^2 = 8 + 36\sqrt{2} + 81 = 89 + 36\sqrt{2} \] Expanding \( b \): \[ b = (2\sqrt{2} - 9)^2 = (2\sqrt{2})^2 - 2 \cdot 2\sqrt{2} \cdot 9 + 9^2 = 8 - 36\sqrt{2} + 81 = 89 - 36\sqrt{2} \] 7. **Final Values of \( a \) and \( b \)**: Thus, we have: \[ a = 89 + 36\sqrt{2}, \quad b = 89 - 36\sqrt{2} \]
Promotional Banner

Topper's Solved these Questions

  • CIRCLE

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise - 3 : Comprehension Type Problems|10 Videos
  • CIRCLE

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise - 5 : Subjective Type Problems|13 Videos
  • CIRCLE

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise - 5 : Subjective Type Problems|13 Videos
  • BIONMIAL THEOREM

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise-4 : Subjective Type Problems|15 Videos
  • COMPLEX NUMBERS

    VIKAS GUPTA (BLACK BOOK)|Exercise EXERCISE-5 : SUBJECTIVE TYPE PROBLEMS|8 Videos

Similar Questions

Explore conceptually related problems

Let x and y be real variables satisfying x^(2)+y^(2)+8x-10y-40=0. Let a=max{sqrt((x+2)^(2)+(y-3)^(2))} and b=min{sqrt((x+2)^(2)+(y-3)^(2))}. Then a+b=18( b) a+b=sqrt(2)a-b=4sqrt(2)( d) a*b=73

Find the real points (x,y) satisfying 3x^(2)-3y^(2)-4xy+10x-10y+10=0

Let x, y be real variable satisfying x^(2) + y^(2) + 8x - 10y - 59 = 0 Let a = max {(x-3)^(2) + (y-4)^(2) and b = min {(x-3)^(2) + (y-4)^(2)) , then a + b + 2010 is ______ .

Two circles x^(2) + y^(2) - 4x + 10y + 20 = 0 and x^(2) + y^(2) + 8x - 6y - 24= 0

(x + 2) (x + 1) = (x -2) (x -3) (y+3)(y+2)=(y-1)(y-2)

I. 6x^(2)+x-1=0 II. 8y^(2)+10y+3=0

The number of solutions (x,y) where x and y are integers,satisfying 2x^(2)+3y^(2)+2x+3y=10 is

The following are the steps involved in factorizing 64 x^(6) -y^(6) . Arrange them in sequential order (A) {(2x)^(3) + y^(3)} {(2x)^(3) - y^(3)} (B) (8x^(3))^(2) - (y^(3))^(2) (C) (8x^(3) + y^(3)) (8x^(3) -y^(3)) (D) (2x + y) (4x^(2) -2xy + y^(2)) (2x - y) (4x^(2) + 2xy + y^(2))