Home
Class 12
MATHS
If y=mx+c be a tangent to hyperbola (x^(...

If `y=mx+c` be a tangent to hyperbola `(x^(2))/(lambda^(2))-(y^(2))/((lambda^(3)+lambda^(2)+lambda)^(2))=1`, then least value of `16m^(2)` equals to :

A

0

B

1

C

4

D

9

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • HYPERBOLA

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise-2 : One or More than One Answer is/are Correct|4 Videos
  • HYPERBOLA

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise-3 : Comprehension Type Problems|3 Videos
  • FUNCTION

    VIKAS GUPTA (BLACK BOOK)|Exercise SUBJECTIVE TYPE PROBLEMS|34 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK)|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|29 Videos

Similar Questions

Explore conceptually related problems

If y=mx+c be a tangent to the hyperbola (x^(2))/(lambda^(2))-(y^(2))/((lambda^(3)+lambda^(2)+lambda)^(2))=1,(lambda!=0), then

If (x+y)^(2)=2(x^(2)+y^(2)) and (xy+lambda)^(2)=4,lambda>0, then lambda is equal to

If (x+y)^(2)=2(x^(2)+y^(2)) and (x-y+lambda)^(2)=4,lambda>0 then lambda is equal to

If (x^(2))/(lambda+3)+(y^(2))/(2-lambda)=1 represents a hyperbola then

If the equation x^(2)+2(lambda+1)x+lambda^(2)+lambda+7=0 has only negative roots,then the least value of lambda equals

For any lambda in R, the locus x^(2)+y^(2)-2 lambda x-2 lambda y+lambda^(2)=0 touches the line

If the line y=2x+lambda be a tangent to the hyperbola 36x^(2)-25y^(2)=3600 , then lambda is equal to