Home
Class 12
MATHS
If all values of x in (a, b) satisfy the...

If all values of `x in (a, b)` satisfy the inequality `tan x tan 3x lt -1, x in (0, (pi)/(2))`, then the maximum value (b, -a) is :

A

`(pi)/(12)`

B

`(pi)/(3)`

C

`(pi)/(6)`

D

`(pi)/(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \( \tan x \tan 3x < -1 \) for \( x \in (0, \frac{\pi}{2}) \), we will follow these steps: ### Step 1: Rewrite the inequality We start with the inequality: \[ \tan x \tan 3x < -1 \] Using the identity for \( \tan 3x \): \[ \tan 3x = \frac{3 \tan x - \tan^3 x}{1 - 3 \tan^2 x} \] Substituting this into the inequality gives: \[ \tan x \left( \frac{3 \tan x - \tan^3 x}{1 - 3 \tan^2 x} \right) < -1 \] ### Step 2: Substitute \( t = \tan x \) Let \( t = \tan x \). The inequality becomes: \[ t \left( \frac{3t - t^3}{1 - 3t^2} \right) < -1 \] Multiplying both sides by \( 1 - 3t^2 \) (noting that this expression is positive for \( t < \frac{1}{\sqrt{3}} \)): \[ t(3t - t^3) < - (1 - 3t^2) \] This simplifies to: \[ 3t^2 - t^4 + 1 - 3t^2 < 0 \] which reduces to: \[ -t^4 + 1 < 0 \quad \text{or} \quad t^4 > 1 \] ### Step 3: Solve the inequality \( t^4 > 1 \) This implies: \[ t > 1 \quad \text{or} \quad t < -1 \] Since \( t = \tan x \) is positive in the interval \( (0, \frac{\pi}{2}) \), we only consider \( t > 1 \). ### Step 4: Find the corresponding \( x \) The condition \( t > 1 \) translates to: \[ \tan x > 1 \] This occurs when: \[ x > \frac{\pi}{4} \] ### Step 5: Determine the interval for \( x \) Now we need to find the interval \( (a, b) \) where \( x \) satisfies the inequality. Since \( x \) must also be less than \( \frac{\pi}{2} \), we have: \[ x \in \left(\frac{\pi}{4}, \frac{\pi}{2}\right) \] Thus, we can identify: - \( a = \frac{\pi}{4} \) - \( b = \frac{\pi}{2} \) ### Step 6: Calculate \( b - a \) Now we find the maximum value of \( b - a \): \[ b - a = \frac{\pi}{2} - \frac{\pi}{4} = \frac{2\pi}{4} - \frac{\pi}{4} = \frac{\pi}{4} \] ### Step 7: Final answer The maximum value of \( (b, -a) \) is: \[ \frac{\pi}{4} \]
Promotional Banner

Topper's Solved these Questions

  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise-2 : One or More than One Answer is/are Correct|26 Videos
  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise-3 : Comprehension Type Problems|12 Videos
  • COMPLEX NUMBERS

    VIKAS GUPTA (BLACK BOOK)|Exercise EXERCISE-5 : SUBJECTIVE TYPE PROBLEMS|8 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK)|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|23 Videos

Similar Questions

Explore conceptually related problems

If all values of x in (a, b) satisfy the inequality tan x tan 3x lt -1, x in (0, (pi)/(2)) , then the maximum value of (b-a) is :

If the set of values of x satisfying the inequalitytan x.tan3x<-1 in the interval (0,(pi)/(2)) is (a,b) then the value of ((36(b-a))/(pi)) is

If tan x = 3/4, pi lt x lt (3pi)/(2), then the value of cos ""x/2 is

The set of values of x in (-pi, pi) satisfying the inequation |4"sin" x-1| lt sqrt(5) , is

Number of values of x in (0,360^(@)) satisfying sin x tan x+1=tan x+sin x is

If x satisfies the inequality (tan^-1x)^2+3(tan^-1x)-4gt0 , then the complete set of values of x is

Find the set of all real values of x satisfying the inequality sec^(-1)xgt tan^(-1)x .

The value of x satisfying the equation tan^(-1)(2x)+tan^(-1)3x=(pi)/(4) is

VIKAS GUPTA (BLACK BOOK)-COMPOUND ANGLES-Exercise-5 : Subjective Type Problems
  1. If all values of x in (a, b) satisfy the inequality tan x tan 3x lt -1...

    Text Solution

    |

  2. Let P=(sin80^(@)sin65^(@) sin35^(@))/(sin20^(@)+sin50^(@)+sin110^(@))...

    Text Solution

    |

  3. The value of expression (1-cot23^(@))(1-cot22^(@)) is equal to :

    Text Solution

    |

  4. If tanA and tanB the roots of the quadratic equation, 4x^(2)-7x+1=0 th...

    Text Solution

    |

  5. A(1)A(2)A(3)………A(18) is a regular 18 sided polygon. B is an external p...

    Text Solution

    |

  6. If 10sin^4 alpha +15cos^4alpha=6 then the value of 9cosec^4 alpha + 8...

    Text Solution

    |

  7. The value of (1+tan\ (3pi)/8*tan\ pi/8)+(1+tan\ (5pi)/8*tan\ (3pi)/8)+...

    Text Solution

    |

  8. If alpha=pi/7 then find the value of (1/cosalpha+(2cosalpha)/(cos2alph...

    Text Solution

    |

  9. Given the for a,b,c,d in R, if a sec(200^@)- ctan(200^@)=d and b sec(...

    Text Solution

    |

  10. The expression 2"cos"(pi)/(17)*"cos"(9pi)/(17)+"cos"(7pi)/(17)+"cos"(9...

    Text Solution

    |

  11. If the expression (sin theta sin2theta+sin3theta sin60theta+sin4theta...

    Text Solution

    |

  12. Let a=sin10^(@), b =sin50^(@), c=sin70^(@)," then " 8abc((a+b)/(c ))((...

    Text Solution

    |

  13. If sin^(3)theta+sin^(3)(theta+(2pi)/(3))+sin^(3)(theta+(4pi)/(3))=a s...

    Text Solution

    |

  14. If sum(r=1)^(n)((tan 2^(r-1))/(cos2^(r )))=tanp^(n)-tan q, then find t...

    Text Solution

    |

  15. If x=sec theta-tan theta and y="cosec"theta+cot theta," then " y-x-xy...

    Text Solution

    |

  16. If cos18^(@)-sin18^(@)=sqrt(n)sin27^(@), then n=

    Text Solution

    |

  17. The value of 3(sin1-cos1)^(4)+6(sin1+cos1)^(2)+4(sin^(6)1+cos^(6)1) i...

    Text Solution

    |

  18. Q. x=a satisfy the equation 3^(sin 2x+2 cos^2 x)+3^(1-sin 2x+2 sin^ 2x...

    Text Solution

    |

  19. The minimum value of (sintheta+c o s e ctheta)^2+(costheta+sectheta)^...

    Text Solution

    |

  20. If tan20^0+tan40^0+tan80^0-tan60^0= lambdasin40^0,

    Text Solution

    |

  21. If K^(@) lies between 360^(@) and 540^(@) and K^(@) satisfies the equa...

    Text Solution

    |