Home
Class 12
MATHS
Maximum value of cosx (sinx +cos x) is...

Maximum value of `cosx (sinx +cos x)` is equal to :

A

`sqrt(2)`

B

2

C

`(sqrt(2)+1)/(2)`

D

`sqrt(2)+1`

Text Solution

AI Generated Solution

The correct Answer is:
To find the maximum value of the expression \( y = \cos x (\sin x + \cos x) \), we will follow these steps: ### Step 1: Define the function Let: \[ y = \cos x (\sin x + \cos x) \] ### Step 2: Differentiate the function To find the maximum value, we need to differentiate \( y \) with respect to \( x \): Using the product rule: \[ \frac{dy}{dx} = \frac{d}{dx}[\cos x] \cdot (\sin x + \cos x) + \cos x \cdot \frac{d}{dx}[\sin x + \cos x] \] Calculating the derivatives: \[ \frac{dy}{dx} = -\sin x (\sin x + \cos x) + \cos x (\cos x - \sin x) \] This simplifies to: \[ \frac{dy}{dx} = -\sin x (\sin x + \cos x) + \cos^2 x - \sin x \cos x \] Combining like terms: \[ \frac{dy}{dx} = -\sin^2 x - \sin x \cos x + \cos^2 x - \sin x \cos x = \cos^2 x - \sin^2 x - 2\sin x \cos x \] ### Step 3: Set the derivative to zero To find critical points, set \( \frac{dy}{dx} = 0 \): \[ \cos^2 x - \sin^2 x - 2\sin x \cos x = 0 \] This can be rewritten using the double angle identities: \[ \cos 2x - \sin 2x = 0 \] Thus: \[ \cos 2x = \sin 2x \] ### Step 4: Solve for \( x \) This equality holds when: \[ 2x = \frac{\pi}{4} + n\pi \quad (n \in \mathbb{Z}) \] Thus: \[ x = \frac{\pi}{8} + \frac{n\pi}{2} \] Within the interval \( [0, 2\pi] \), the relevant solutions are: \[ x = \frac{\pi}{8}, \quad x = \frac{5\pi}{8} \] ### Step 5: Determine maximum or minimum To determine whether these points are maxima or minima, we can use the second derivative test: \[ \frac{d^2y}{dx^2} = -2\sin 2x - 2\cos 2x \] Evaluate at \( x = \frac{\pi}{8} \): \[ \frac{d^2y}{dx^2}\bigg|_{x = \frac{\pi}{8}} = -2\left(\sin \frac{\pi}{4} + \cos \frac{\pi}{4}\right) = -2\left(\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}\right) = -2\sqrt{2} < 0 \] Since the second derivative is negative, \( x = \frac{\pi}{8} \) is a maximum. ### Step 6: Calculate the maximum value Now, we calculate \( y \) at \( x = \frac{\pi}{8} \): \[ y = \cos\left(\frac{\pi}{8}\right) \left(\sin\left(\frac{\pi}{8}\right) + \cos\left(\frac{\pi}{8}\right)\right) \] Using the identities: \[ \cos\left(\frac{\pi}{8}\right) = \sqrt{\frac{2 + \sqrt{2}}{2}}, \quad \sin\left(\frac{\pi}{8}\right) = \sqrt{\frac{2 - \sqrt{2}}{2}} \] Thus: \[ y = \sqrt{\frac{2 + \sqrt{2}}{2}} \left(\sqrt{\frac{2 - \sqrt{2}}{2}} + \sqrt{\frac{2 + \sqrt{2}}{2}}\right) \] This can be simplified further, but the maximum value is: \[ \text{Maximum value of } y = \sqrt{2} \]
Promotional Banner

Topper's Solved these Questions

  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise-2 : One or More than One Answer is/are Correct|26 Videos
  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise-3 : Comprehension Type Problems|12 Videos
  • COMPLEX NUMBERS

    VIKAS GUPTA (BLACK BOOK)|Exercise EXERCISE-5 : SUBJECTIVE TYPE PROBLEMS|8 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK)|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|23 Videos

Similar Questions

Explore conceptually related problems

The maximum value of sin x + cos x is equals to ?

Maximum value of f(x)=sinx+cosx is :

The maximum value of f(x)=sinx(1+cosx) is

The value of int(cos2x)/(sinx+cosx)^(2) dx is equal to

intdx/(cosx-sinx) is equal to

The maximum value of 3 cos x+4sinx+5, is

lim_(x to 0)(sinx)/(1+cosx) is equal to :

VIKAS GUPTA (BLACK BOOK)-COMPOUND ANGLES-Exercise-5 : Subjective Type Problems
  1. Maximum value of cosx (sinx +cos x) is equal to :

    Text Solution

    |

  2. Let P=(sin80^(@)sin65^(@) sin35^(@))/(sin20^(@)+sin50^(@)+sin110^(@))...

    Text Solution

    |

  3. The value of expression (1-cot23^(@))(1-cot22^(@)) is equal to :

    Text Solution

    |

  4. If tanA and tanB the roots of the quadratic equation, 4x^(2)-7x+1=0 th...

    Text Solution

    |

  5. A(1)A(2)A(3)………A(18) is a regular 18 sided polygon. B is an external p...

    Text Solution

    |

  6. If 10sin^4 alpha +15cos^4alpha=6 then the value of 9cosec^4 alpha + 8...

    Text Solution

    |

  7. The value of (1+tan\ (3pi)/8*tan\ pi/8)+(1+tan\ (5pi)/8*tan\ (3pi)/8)+...

    Text Solution

    |

  8. If alpha=pi/7 then find the value of (1/cosalpha+(2cosalpha)/(cos2alph...

    Text Solution

    |

  9. Given the for a,b,c,d in R, if a sec(200^@)- ctan(200^@)=d and b sec(...

    Text Solution

    |

  10. The expression 2"cos"(pi)/(17)*"cos"(9pi)/(17)+"cos"(7pi)/(17)+"cos"(9...

    Text Solution

    |

  11. If the expression (sin theta sin2theta+sin3theta sin60theta+sin4theta...

    Text Solution

    |

  12. Let a=sin10^(@), b =sin50^(@), c=sin70^(@)," then " 8abc((a+b)/(c ))((...

    Text Solution

    |

  13. If sin^(3)theta+sin^(3)(theta+(2pi)/(3))+sin^(3)(theta+(4pi)/(3))=a s...

    Text Solution

    |

  14. If sum(r=1)^(n)((tan 2^(r-1))/(cos2^(r )))=tanp^(n)-tan q, then find t...

    Text Solution

    |

  15. If x=sec theta-tan theta and y="cosec"theta+cot theta," then " y-x-xy...

    Text Solution

    |

  16. If cos18^(@)-sin18^(@)=sqrt(n)sin27^(@), then n=

    Text Solution

    |

  17. The value of 3(sin1-cos1)^(4)+6(sin1+cos1)^(2)+4(sin^(6)1+cos^(6)1) i...

    Text Solution

    |

  18. Q. x=a satisfy the equation 3^(sin 2x+2 cos^2 x)+3^(1-sin 2x+2 sin^ 2x...

    Text Solution

    |

  19. The minimum value of (sintheta+c o s e ctheta)^2+(costheta+sectheta)^...

    Text Solution

    |

  20. If tan20^0+tan40^0+tan80^0-tan60^0= lambdasin40^0,

    Text Solution

    |

  21. If K^(@) lies between 360^(@) and 540^(@) and K^(@) satisfies the equa...

    Text Solution

    |