Home
Class 12
MATHS
If log(3) sin x-log(3) cos x-log(3)(1- ...

If `log_(3) sin x-log_(3) cos x-log_(3)(1- tan x)-log_(3)(1+tan x)= -1`, then `tan2x` is equal to (wherever defined)

A

-2

B

`(3)/(2)`

C

`(2)/(3)`

D

6

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \log_{3} \sin x - \log_{3} \cos x - \log_{3}(1 - \tan x) - \log_{3}(1 + \tan x) = -1 \), we can follow these steps: ### Step 1: Combine the logarithmic expressions Using the properties of logarithms, we can combine the logarithmic terms: \[ \log_{3} \sin x - \log_{3} \cos x = \log_{3} \left(\frac{\sin x}{\cos x}\right) = \log_{3} (\tan x) \] And for the other terms: \[ -\log_{3}(1 - \tan x) - \log_{3}(1 + \tan x) = -\log_{3}((1 - \tan x)(1 + \tan x)) = -\log_{3}(1 - \tan^2 x) \] Thus, we can rewrite the equation as: \[ \log_{3} (\tan x) - \log_{3}(1 - \tan^2 x) = -1 \] ### Step 2: Use the properties of logarithms to simplify Now, we can combine these logarithms: \[ \log_{3} \left(\frac{\tan x}{1 - \tan^2 x}\right) = -1 \] ### Step 3: Convert from logarithmic to exponential form Using the definition of logarithms, we can convert this to exponential form: \[ \frac{\tan x}{1 - \tan^2 x} = 3^{-1} = \frac{1}{3} \] ### Step 4: Cross-multiply to eliminate the fraction Cross-multiplying gives us: \[ \tan x = \frac{1}{3} (1 - \tan^2 x) \] ### Step 5: Rearranging the equation Rearranging this equation leads to: \[ \tan x + \frac{1}{3} \tan^2 x = \frac{1}{3} \] Multiplying through by 3 to eliminate the fraction: \[ 3 \tan x + \tan^2 x = 1 \] ### Step 6: Rearranging into standard quadratic form Rearranging gives us: \[ \tan^2 x + 3 \tan x - 1 = 0 \] ### Step 7: Solve the quadratic equation Using the quadratic formula \( \tan x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): Here, \( a = 1, b = 3, c = -1 \): \[ \tan x = \frac{-3 \pm \sqrt{3^2 - 4 \cdot 1 \cdot (-1)}}{2 \cdot 1} = \frac{-3 \pm \sqrt{9 + 4}}{2} = \frac{-3 \pm \sqrt{13}}{2} \] ### Step 8: Find \( \tan 2x \) Using the double angle formula for tangent: \[ \tan 2x = \frac{2 \tan x}{1 - \tan^2 x} \] Substituting \( \tan x = \frac{-3 + \sqrt{13}}{2} \) or \( \tan x = \frac{-3 - \sqrt{13}}{2} \) into the formula will yield the value of \( \tan 2x \). Calculating \( \tan^2 x \): \[ \tan^2 x = \left(\frac{-3 + \sqrt{13}}{2}\right)^2 = \frac{(-3 + \sqrt{13})^2}{4} = \frac{9 - 6\sqrt{13} + 13}{4} = \frac{22 - 6\sqrt{13}}{4} \] Now substituting back into \( \tan 2x \): \[ \tan 2x = \frac{2 \cdot \frac{-3 + \sqrt{13}}{2}}{1 - \frac{22 - 6\sqrt{13}}{4}} = \frac{-3 + \sqrt{13}}{1 - \frac{22 - 6\sqrt{13}}{4}} \] Simplifying this will yield \( \tan 2x = \frac{2}{3} \). ### Final Answer Thus, \( \tan 2x = \frac{2}{3} \). ---
Promotional Banner

Topper's Solved these Questions

  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise-2 : One or More than One Answer is/are Correct|26 Videos
  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise-3 : Comprehension Type Problems|12 Videos
  • COMPLEX NUMBERS

    VIKAS GUPTA (BLACK BOOK)|Exercise EXERCISE-5 : SUBJECTIVE TYPE PROBLEMS|8 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK)|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|23 Videos

Similar Questions

Explore conceptually related problems

log_(2)sin x-log_(2)cos x-log_(2)(1-tan x)-log_(2)(1+tan x)=-1

lf_(log_(2)(3sin x)-log_(2)(cos x)-log_(2)(1-tan x)-log_(2)(1+tan x)=1) then tan x=

lf_(log_(2)sin x-log_(2)cos x-log_(2)(1-tan^(2)x))=-1, then x=

If "log"_(2) "sin" x - "log"_(2) "cos" x - "log"_(2) (1-"tan"^(2) x) =-1 , then x =

If log_(2)[log_(3)(log_(2)x)]=1 , then x is equal to

e^(tan^(-1)x)log(tan x)

log_(2)(x+1)-log_(2)(3x-1)=2

Differentiate log_(3)x-3log_(e)x+2tan x

VIKAS GUPTA (BLACK BOOK)-COMPOUND ANGLES-Exercise-5 : Subjective Type Problems
  1. If log(3) sin x-log(3) cos x-log(3)(1- tan x)-log(3)(1+tan x)= -1, th...

    Text Solution

    |

  2. Let P=(sin80^(@)sin65^(@) sin35^(@))/(sin20^(@)+sin50^(@)+sin110^(@))...

    Text Solution

    |

  3. The value of expression (1-cot23^(@))(1-cot22^(@)) is equal to :

    Text Solution

    |

  4. If tanA and tanB the roots of the quadratic equation, 4x^(2)-7x+1=0 th...

    Text Solution

    |

  5. A(1)A(2)A(3)………A(18) is a regular 18 sided polygon. B is an external p...

    Text Solution

    |

  6. If 10sin^4 alpha +15cos^4alpha=6 then the value of 9cosec^4 alpha + 8...

    Text Solution

    |

  7. The value of (1+tan\ (3pi)/8*tan\ pi/8)+(1+tan\ (5pi)/8*tan\ (3pi)/8)+...

    Text Solution

    |

  8. If alpha=pi/7 then find the value of (1/cosalpha+(2cosalpha)/(cos2alph...

    Text Solution

    |

  9. Given the for a,b,c,d in R, if a sec(200^@)- ctan(200^@)=d and b sec(...

    Text Solution

    |

  10. The expression 2"cos"(pi)/(17)*"cos"(9pi)/(17)+"cos"(7pi)/(17)+"cos"(9...

    Text Solution

    |

  11. If the expression (sin theta sin2theta+sin3theta sin60theta+sin4theta...

    Text Solution

    |

  12. Let a=sin10^(@), b =sin50^(@), c=sin70^(@)," then " 8abc((a+b)/(c ))((...

    Text Solution

    |

  13. If sin^(3)theta+sin^(3)(theta+(2pi)/(3))+sin^(3)(theta+(4pi)/(3))=a s...

    Text Solution

    |

  14. If sum(r=1)^(n)((tan 2^(r-1))/(cos2^(r )))=tanp^(n)-tan q, then find t...

    Text Solution

    |

  15. If x=sec theta-tan theta and y="cosec"theta+cot theta," then " y-x-xy...

    Text Solution

    |

  16. If cos18^(@)-sin18^(@)=sqrt(n)sin27^(@), then n=

    Text Solution

    |

  17. The value of 3(sin1-cos1)^(4)+6(sin1+cos1)^(2)+4(sin^(6)1+cos^(6)1) i...

    Text Solution

    |

  18. Q. x=a satisfy the equation 3^(sin 2x+2 cos^2 x)+3^(1-sin 2x+2 sin^ 2x...

    Text Solution

    |

  19. The minimum value of (sintheta+c o s e ctheta)^2+(costheta+sectheta)^...

    Text Solution

    |

  20. If tan20^0+tan40^0+tan80^0-tan60^0= lambdasin40^0,

    Text Solution

    |

  21. If K^(@) lies between 360^(@) and 540^(@) and K^(@) satisfies the equa...

    Text Solution

    |