Home
Class 12
MATHS
Minimum value of 3 sin theta+4 cos thet...

Minimum value of `3 sin theta+4 cos theta` in the interval `[0, (pi)/(2)]` is :

A

-5

B

3

C

4

D

`(7)/(sqrt(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the minimum value of the expression \(3 \sin \theta + 4 \cos \theta\) in the interval \([0, \frac{\pi}{2}]\), we can follow these steps: ### Step 1: Identify the expression We want to minimize the expression: \[ f(\theta) = 3 \sin \theta + 4 \cos \theta \] ### Step 2: Find the derivative To find the critical points, we need to take the derivative of \(f(\theta)\) with respect to \(\theta\): \[ f'(\theta) = 3 \cos \theta - 4 \sin \theta \] ### Step 3: Set the derivative to zero To find the critical points, set the derivative equal to zero: \[ 3 \cos \theta - 4 \sin \theta = 0 \] This can be rearranged to: \[ 3 \cos \theta = 4 \sin \theta \] Dividing both sides by \(\cos \theta\) (assuming \(\cos \theta \neq 0\)): \[ 3 = 4 \tan \theta \] Thus, \[ \tan \theta = \frac{3}{4} \] ### Step 4: Find \(\theta\) Now, we can find \(\theta\) using the arctangent function: \[ \theta = \tan^{-1}\left(\frac{3}{4}\right) \] ### Step 5: Check if \(\theta\) is in the interval We need to check if \(\theta = \tan^{-1}\left(\frac{3}{4}\right)\) lies within the interval \([0, \frac{\pi}{2}]\). Since \(\tan^{-1}\left(\frac{3}{4}\right)\) is a positive angle, it is indeed in the interval. ### Step 6: Evaluate the function at the critical point and endpoints Now we evaluate the function at the critical point and at the endpoints of the interval: 1. At \(\theta = 0\): \[ f(0) = 3 \sin(0) + 4 \cos(0) = 0 + 4 = 4 \] 2. At \(\theta = \frac{\pi}{2}\): \[ f\left(\frac{\pi}{2}\right) = 3 \sin\left(\frac{\pi}{2}\right) + 4 \cos\left(\frac{\pi}{2}\right) = 3 + 0 = 3 \] 3. At \(\theta = \tan^{-1}\left(\frac{3}{4}\right)\): We can substitute \(\theta\) back into the original function: \[ f\left(\tan^{-1}\left(\frac{3}{4}\right)\right) = 3 \sin\left(\tan^{-1}\left(\frac{3}{4}\right)\right) + 4 \cos\left(\tan^{-1}\left(\frac{3}{4}\right)\right) \] Using the identity \(\sin(\tan^{-1}(x)) = \frac{x}{\sqrt{1+x^2}}\) and \(\cos(\tan^{-1}(x)) = \frac{1}{\sqrt{1+x^2}}\): \[ \sin\left(\tan^{-1}\left(\frac{3}{4}\right)\right) = \frac{3}{5}, \quad \cos\left(\tan^{-1}\left(\frac{3}{4}\right)\right) = \frac{4}{5} \] Thus, \[ f\left(\tan^{-1}\left(\frac{3}{4}\right)\right) = 3 \cdot \frac{3}{5} + 4 \cdot \frac{4}{5} = \frac{9}{5} + \frac{16}{5} = \frac{25}{5} = 5 \] ### Step 7: Determine the minimum value Now we compare the values: - \(f(0) = 4\) - \(f\left(\frac{\pi}{2}\right) = 3\) - \(f\left(\tan^{-1}\left(\frac{3}{4}\right)\right) = 5\) The minimum value occurs at \(\theta = \frac{\pi}{2}\): \[ \text{Minimum value} = 3 \] ### Final Answer The minimum value of \(3 \sin \theta + 4 \cos \theta\) in the interval \([0, \frac{\pi}{2}]\) is **3**.
Promotional Banner

Topper's Solved these Questions

  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise-2 : One or More than One Answer is/are Correct|26 Videos
  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise-3 : Comprehension Type Problems|12 Videos
  • COMPLEX NUMBERS

    VIKAS GUPTA (BLACK BOOK)|Exercise EXERCISE-5 : SUBJECTIVE TYPE PROBLEMS|8 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK)|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|23 Videos

Similar Questions

Explore conceptually related problems

Minimum value of (1)/(3 sin theta - 4 cos theta + 7) is

The minimum value of sin^2 theta + cos^4 theta is

The minimum value of 2 sin^2 theta + 3cos^2 theta is

The minimum value of (1)/(3sin theta-4cos theta+7) is

Solution set of equation 2 sin^(2) theta = 3 cos theta in the interval [0, 2 pi] is

Number of solutions of the equation "sin" 2 theta + 2 = 4"sin" theta + "cos" theta lying in the interval [pi, 5pi] is

Number of solutions of 5cos^(2)theta-3sin^(2)theta+6sin theta cos theta=7 in the interval [0,2 pi) is:

VIKAS GUPTA (BLACK BOOK)-COMPOUND ANGLES-Exercise-5 : Subjective Type Problems
  1. Minimum value of 3 sin theta+4 cos theta in the interval [0, (pi)/(2)...

    Text Solution

    |

  2. Let P=(sin80^(@)sin65^(@) sin35^(@))/(sin20^(@)+sin50^(@)+sin110^(@))...

    Text Solution

    |

  3. The value of expression (1-cot23^(@))(1-cot22^(@)) is equal to :

    Text Solution

    |

  4. If tanA and tanB the roots of the quadratic equation, 4x^(2)-7x+1=0 th...

    Text Solution

    |

  5. A(1)A(2)A(3)………A(18) is a regular 18 sided polygon. B is an external p...

    Text Solution

    |

  6. If 10sin^4 alpha +15cos^4alpha=6 then the value of 9cosec^4 alpha + 8...

    Text Solution

    |

  7. The value of (1+tan\ (3pi)/8*tan\ pi/8)+(1+tan\ (5pi)/8*tan\ (3pi)/8)+...

    Text Solution

    |

  8. If alpha=pi/7 then find the value of (1/cosalpha+(2cosalpha)/(cos2alph...

    Text Solution

    |

  9. Given the for a,b,c,d in R, if a sec(200^@)- ctan(200^@)=d and b sec(...

    Text Solution

    |

  10. The expression 2"cos"(pi)/(17)*"cos"(9pi)/(17)+"cos"(7pi)/(17)+"cos"(9...

    Text Solution

    |

  11. If the expression (sin theta sin2theta+sin3theta sin60theta+sin4theta...

    Text Solution

    |

  12. Let a=sin10^(@), b =sin50^(@), c=sin70^(@)," then " 8abc((a+b)/(c ))((...

    Text Solution

    |

  13. If sin^(3)theta+sin^(3)(theta+(2pi)/(3))+sin^(3)(theta+(4pi)/(3))=a s...

    Text Solution

    |

  14. If sum(r=1)^(n)((tan 2^(r-1))/(cos2^(r )))=tanp^(n)-tan q, then find t...

    Text Solution

    |

  15. If x=sec theta-tan theta and y="cosec"theta+cot theta," then " y-x-xy...

    Text Solution

    |

  16. If cos18^(@)-sin18^(@)=sqrt(n)sin27^(@), then n=

    Text Solution

    |

  17. The value of 3(sin1-cos1)^(4)+6(sin1+cos1)^(2)+4(sin^(6)1+cos^(6)1) i...

    Text Solution

    |

  18. Q. x=a satisfy the equation 3^(sin 2x+2 cos^2 x)+3^(1-sin 2x+2 sin^ 2x...

    Text Solution

    |

  19. The minimum value of (sintheta+c o s e ctheta)^2+(costheta+sectheta)^...

    Text Solution

    |

  20. If tan20^0+tan40^0+tan80^0-tan60^0= lambdasin40^0,

    Text Solution

    |

  21. If K^(@) lies between 360^(@) and 540^(@) and K^(@) satisfies the equa...

    Text Solution

    |