Home
Class 12
MATHS
Consider the function f(x)=(sqrt(1+cos x...

Consider the function `f(x)=(sqrt(1+cos x)+sqrt(1-cosx))/(sqrt(1+cosx)-sqrt(1-cos x))` then
Q. If `x in (pi, 2pi)` then f(x) is

A

`cot((pi)/(2)+(x)/(2))`

B

`tan((pi)/(4)+(x)/(2))`

C

`cot((pi)/(4)-(x)/(2))`

D

`tan(( pi)/(4)-(x)/(2))`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise-4 : Matching Type Problems|2 Videos
  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise-5 : Subjective Type Problems|31 Videos
  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise-2 : One or More than One Answer is/are Correct|26 Videos
  • COMPLEX NUMBERS

    VIKAS GUPTA (BLACK BOOK)|Exercise EXERCISE-5 : SUBJECTIVE TYPE PROBLEMS|8 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK)|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|23 Videos

Similar Questions

Explore conceptually related problems

tan^(-1){(sqrt(1+cos x)+sqrt(1-cos x))/(sqrt(1+cos x)-sqrt(1-cos x))}

If (sqrt(1+cosx)+sqrt(1-cosx))/(sqrt(1+cosx)-sqrt(1-cosx))=cot(a+x/2) and x in (pi,2pi) then 'a' is equal to :

The function f(x)=sqrt(1-sqrt(1-x^(2)))

If the function f(x)=(sqrt(1+cos x)+sqrt(1-cos x))/(sqrt(1+cos x)-sqrt(1-cos x)) If the value of f((pi)/(3))=a+b sqrt(c) then a+b+c=

Simplest form of tan^(-1)((sqrt(1+cos x)+sqrt(1-cos x))/(sqrt(1+cos x)-sqrt(1-cos x))), pi lt x lt (3 pi)/(2) is:

Simplest form of tan^(-1)((sqrt(1+cosx)+sqrt(1-cosx))/(sqrt(1+cosx)-sqrt(1-cosx))), pi lt x lt (3pi)/2 is :

Prove that: tan^(^^)(-1){(sqrt(1+cos x)+sqrt(1-cos x))/(sqrt(1+cos x)-sqrt(1-cos x))}=pi/4-x/2, if pi

The domain of the function f(x)=(1)/(sqrt(|cosx|+cosx)) is

Show that: tan^(-1)[ (sqrt(1+cosx)+sqrt(1-cosx))/(sqrt(1+cosx)-sqrt(1-cosx))] =(pi)/(4)+(x)/(2), x in [0, pi]