Home
Class 12
MATHS
If sin^(3)theta+sin^(3)(theta+(2pi)/(3)...

If `sin^(3)theta+sin^(3)(theta+(2pi)/(3))+sin^(3)(theta+(4pi)/(3))=a sinb theta`. Find the value of `|(b)/(a)|`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sin^3 \theta + \sin^3 \left( \theta + \frac{2\pi}{3} \right) + \sin^3 \left( \theta + \frac{4\pi}{3} \right) = a \sin b \theta \), we will use the identity for \( \sin^3 \theta \). ### Step-by-step Solution: 1. **Use the identity for \( \sin^3 \theta \)**: The identity for \( \sin^3 \theta \) is: \[ \sin^3 \theta = \frac{3 \sin \theta - \sin 3\theta}{4} \] We will apply this identity to each term in the equation. 2. **Apply the identity**: We can rewrite each term: \[ \sin^3 \theta = \frac{3 \sin \theta - \sin 3\theta}{4} \] \[ \sin^3 \left( \theta + \frac{2\pi}{3} \right) = \frac{3 \sin \left( \theta + \frac{2\pi}{3} \right) - \sin \left( 3\theta + 2\pi \right)}{4} = \frac{3 \sin \left( \theta + \frac{2\pi}{3} \right) - \sin 3\theta}{4} \] \[ \sin^3 \left( \theta + \frac{4\pi}{3} \right) = \frac{3 \sin \left( \theta + \frac{4\pi}{3} \right) - \sin \left( 3\theta + 4\pi \right)}{4} = \frac{3 \sin \left( \theta + \frac{4\pi}{3} \right) - \sin 3\theta}{4} \] 3. **Combine the terms**: Now we can combine these terms: \[ \sin^3 \theta + \sin^3 \left( \theta + \frac{2\pi}{3} \right) + \sin^3 \left( \theta + \frac{4\pi}{3} \right) = \frac{1}{4} \left( 3 \sin \theta + 3 \sin \left( \theta + \frac{2\pi}{3} \right) + 3 \sin \left( \theta + \frac{4\pi}{3} \right) - 3 \sin 3\theta \right) \] 4. **Evaluate the sine terms**: The sum \( \sin \theta + \sin \left( \theta + \frac{2\pi}{3} \right) + \sin \left( \theta + \frac{4\pi}{3} \right) \) is known to equal 0. Thus, we have: \[ 3 \left( \sin \theta + \sin \left( \theta + \frac{2\pi}{3} \right) + \sin \left( \theta + \frac{4\pi}{3} \right) \right) = 0 \] 5. **Final expression**: Therefore, the equation simplifies to: \[ \sin^3 \theta + \sin^3 \left( \theta + \frac{2\pi}{3} \right) + \sin^3 \left( \theta + \frac{4\pi}{3} \right) = -\frac{3}{4} \sin 3\theta \] This means we can express it as: \[ -\frac{3}{4} \sin 3\theta = a \sin b \theta \] Here, we identify \( a = -\frac{3}{4} \) and \( b = 3 \). 6. **Calculate \( \left| \frac{b}{a} \right| \)**: Now we need to find \( \left| \frac{b}{a} \right| \): \[ \left| \frac{b}{a} \right| = \left| \frac{3}{-\frac{3}{4}} \right| = \left| -4 \right| = 4 \] ### Final Answer: The value of \( \left| \frac{b}{a} \right| \) is \( 4 \).
Promotional Banner

Topper's Solved these Questions

  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise-4 : Matching Type Problems|2 Videos
  • COMPLEX NUMBERS

    VIKAS GUPTA (BLACK BOOK)|Exercise EXERCISE-5 : SUBJECTIVE TYPE PROBLEMS|8 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK)|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|23 Videos

Similar Questions

Explore conceptually related problems

If f( theta ) = sin ^(3)theta + sin ^(3)( theta + (2pi)/(3)) + sin ^(3)( theta + (4pi)/(3)) then the value of f((pi)/(18)) + f((7pi)/(18)) is ___________.

If x sintheta=ysin(theta+(2pi)/(3))=z sin(theta+(4pi)/(3)), then

Prove that: 4sin theta sin(theta+(pi)/(3))sin(theta+(2 pi)/(3))=sin3 theta

Prove that sin(theta-(pi)/(6))+cos(theta-(pi)/(3))=sqrt(3)sin theta

Prove that 4sin theta sin((pi)/(3)+theta)sin((2 pi)/(3)+theta)=sin3 theta

The value of the determinant |sin theta,cos theta,sin2 thetasin(theta+(2 pi)/(3)),cos(theta+(2 pi)/(3)),sin(2 theta+(4 pi)/(3))sin(theta-(2 pi)/(3)),cos(theta-(2 pi)/(3)),sin(2 theta-(4 pi)/(3))

sin theta+sin((2 pi)/(3)+theta)+sin((4 pi)/(3)+theta)=0

4 sin ((pi)/(3) + theta)sin ((pi)/(3)- theta)=

If theta in[(pi)/(2),(3 pi)/(2)] then sin^(-1)(sin theta)=

VIKAS GUPTA (BLACK BOOK)-COMPOUND ANGLES-Exercise-5 : Subjective Type Problems
  1. If the expression (sin theta sin2theta+sin3theta sin60theta+sin4theta...

    Text Solution

    |

  2. Let a=sin10^(@), b =sin50^(@), c=sin70^(@)," then " 8abc((a+b)/(c ))((...

    Text Solution

    |

  3. If sin^(3)theta+sin^(3)(theta+(2pi)/(3))+sin^(3)(theta+(4pi)/(3))=a s...

    Text Solution

    |

  4. If sum(r=1)^(n)((tan 2^(r-1))/(cos2^(r )))=tanp^(n)-tan q, then find t...

    Text Solution

    |

  5. If x=sec theta-tan theta and y="cosec"theta+cot theta," then " y-x-xy...

    Text Solution

    |

  6. If cos18^(@)-sin18^(@)=sqrt(n)sin27^(@), then n=

    Text Solution

    |

  7. The value of 3(sin1-cos1)^(4)+6(sin1+cos1)^(2)+4(sin^(6)1+cos^(6)1) i...

    Text Solution

    |

  8. Q. x=a satisfy the equation 3^(sin 2x+2 cos^2 x)+3^(1-sin 2x+2 sin^ 2x...

    Text Solution

    |

  9. The minimum value of (sintheta+c o s e ctheta)^2+(costheta+sectheta)^...

    Text Solution

    |

  10. If tan20^0+tan40^0+tan80^0-tan60^0= lambdasin40^0,

    Text Solution

    |

  11. If K^(@) lies between 360^(@) and 540^(@) and K^(@) satisfies the equa...

    Text Solution

    |

  12. If cos20^(@)+2sin^(2)55^(@)=1+sqrt(2)sinK^(@), K in (0, 90)," then "K=

    Text Solution

    |

  13. If the value of cos((2pi)/7) + cos((4pi)/7)+cos((6pi)/7)+cos((7pi/7))=...

    Text Solution

    |

  14. Let alpha be the smallest integral value of x, x>0 such that tan 19x=(...

    Text Solution

    |

  15. Find the value of the expression (sin20^@(4cos20^@+1))/(cos20^@cos30^@...

    Text Solution

    |

  16. If the value of cos((2pi)/7) + cos((4pi)/7)+cos((6pi)/7)+cos((7pi/7))=...

    Text Solution

    |

  17. If cosA=(3)/(4) and k sin ((A)/(2))sin((5A)/(2))=(11)/(8). Find k.

    Text Solution

    |

  18. Find the least value of the expression 3sin^(2)x+4 cos^(2)x.

    Text Solution

    |

  19. Q. If tan alpha and tan beta are the roots of equation x^2-12x-3=0, th...

    Text Solution

    |

  20. The value of cos24^0/(2tan33^0sin^2(57^0))+sin162^0/(sin18^0-cos18^0ta...

    Text Solution

    |