Home
Class 12
MATHS
Domain (D) and range (R ) of f(x)=sin^...

Domain (D) and range (R ) of `f(x)=sin^(-1)(cos^(-1)[x])` where [ ] denotes the greatest integer function is

A

`D-=[1, 2), R-={0}`

B

`D-=[0,1), R-={-1, 0,1}`

C

`D-=[-1, 1), R-={0, (pi)/(2), pi}`

D

`D-=[-1,1], R-={-(pi)/(2), 0, (pi)/(2)}`

Text Solution

AI Generated Solution

The correct Answer is:
To find the domain (D) and range (R) of the function \( f(x) = \sin^{-1}(\cos^{-1}[\lfloor x \rfloor]) \), where \( [\cdot] \) denotes the greatest integer function, we will analyze the components of the function step by step. ### Step 1: Determine the domain of the greatest integer function \( \lfloor x \rfloor \) The greatest integer function \( \lfloor x \rfloor \) can take any integer value depending on the value of \( x \). Therefore, the domain of \( \lfloor x \rfloor \) is all real numbers: **Domain of \( \lfloor x \rfloor \):** \( (-\infty, \infty) \) ### Step 2: Determine the range of \( \lfloor x \rfloor \) The output of \( \lfloor x \rfloor \) is any integer \( n \) such that \( n \in \mathbb{Z} \). Thus, the range of \( \lfloor x \rfloor \) is: **Range of \( \lfloor x \rfloor \):** \( \mathbb{Z} \) ### Step 3: Determine the domain of \( \cos^{-1}(y) \) The function \( \cos^{-1}(y) \) is defined for \( y \) in the interval \( [-1, 1] \). Since \( \lfloor x \rfloor \) can take any integer value, we need to restrict \( \lfloor x \rfloor \) to the values within this interval. The only integers that fall within this range are \( 0 \) and \( 1 \) (as \( -1 \) is not included in the output of \( \lfloor x \rfloor \) for non-negative \( x \)). Thus, the valid inputs for \( \cos^{-1}([\lfloor x \rfloor]) \) are: - If \( \lfloor x \rfloor = 0 \) then \( \cos^{-1}(0) = \frac{\pi}{2} \) - If \( \lfloor x \rfloor = 1 \) then \( \cos^{-1}(1) = 0 \) ### Step 4: Determine the range of \( \cos^{-1}([\lfloor x \rfloor]) \) The range of \( \cos^{-1}([\lfloor x \rfloor]) \) is therefore: **Range of \( \cos^{-1}([\lfloor x \rfloor]) \):** \( \{0, \frac{\pi}{2}\} \) ### Step 5: Determine the domain of \( \sin^{-1}(z) \) The function \( \sin^{-1}(z) \) is defined for \( z \) in the interval \( [-1, 1] \). Since the outputs from \( \cos^{-1}([\lfloor x \rfloor]) \) are \( 0 \) and \( \frac{\pi}{2} \), we need to check if these values are valid inputs for \( \sin^{-1}(z) \): - \( \sin^{-1}(0) = 0 \) - \( \sin^{-1}(\frac{\pi}{2}) \) is not defined since \( \frac{\pi}{2} > 1 \) Thus, the only valid input for \( \sin^{-1}(z) \) is \( 0 \). ### Step 6: Determine the range of \( f(x) \) Since the only valid output from \( \sin^{-1}(z) \) is \( 0 \), the range of \( f(x) \) is: **Range of \( f(x) \):** \( \{0\} \) ### Final Answer **Domain (D) of \( f(x) \):** \( (-\infty, \infty) \) **Range (R) of \( f(x) \):** \( \{0\} \)
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise-2 : One or More than One Answer is/are Correct|6 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise-3 : Comprehension Type Problems|2 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK)|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|29 Videos
  • LIMIT

    VIKAS GUPTA (BLACK BOOK)|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos

Similar Questions

Explore conceptually related problems

Find the domain and range of f(x)=sin^(-1)(log[x])+log(sin^(-1)[x]), where [.] denotes the greatest integer function.

f(x)= cosec^(-1)[1+sin^(2)x] , where [*] denotes the greatest integer function.

Let f(x)=sec^(-1)[1+cos^(2)x], where [.] denotes the greatest integer function. Then the

Let f(x)=(-1)^([x]) where [.] denotes the greatest integer function),then

Domain of cos^(-1)[2x^(2)-3] where [ ] denotes greatest integer function, is

The range of f(x)=(2+x-[x])/(1-x+[x]). where [1] denotes the greatest integer function is

Range of f(x)=sin^(-1)[x-1]+2cos^(-1)[x-2] ([.] denotes greatest integer function)

Solution set of [sin^(-1)x]>[cos^(-1)x]. where [*] denotes greatest integer function

Find the domain and range of f(x)="sin"^(-1)(x-[x]), where [.] represents the greatest integer function.

f(x)=sin^(-1)[2x^(2)-3] , where [*] denotes the greatest integer function. Find the domain of f(x).