Home
Class 12
MATHS
If 2sin^(-1)x+{cos^(-1)x} gt (pi)/(2)+{...

If `2sin^(-1)x+{cos^(-1)x} gt (pi)/(2)+{sin^(-1)x}`, then `x in `: (where `{*}` denotes fractional part function)

A

(cos 1, 1]

B

[sin 1, 1]

C

(sin 1, 1]

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \( 2\sin^{-1}x + \{ \cos^{-1}x \} > \frac{\pi}{2} + \{ \sin^{-1}x \} \), we will follow these steps: ### Step 1: Rewrite the fractional parts We know that the fractional part function can be expressed as: \[ \{ y \} = y - \lfloor y \rfloor \] Thus, we can rewrite the inequality as: \[ 2\sin^{-1}x + \left( \cos^{-1}x - \lfloor \cos^{-1}x \rfloor \right) > \frac{\pi}{2} + \left( \sin^{-1}x - \lfloor \sin^{-1}x \rfloor \right) \] ### Step 2: Simplify the inequality Rearranging the terms gives us: \[ 2\sin^{-1}x + \cos^{-1}x - \frac{\pi}{2} > \lfloor \cos^{-1}x \rfloor + \lfloor \sin^{-1}x \rfloor + \sin^{-1}x \] Using the identity \( \sin^{-1}x + \cos^{-1}x = \frac{\pi}{2} \), we can substitute \( \cos^{-1}x \): \[ 2\sin^{-1}x + \left( \frac{\pi}{2} - \sin^{-1}x \right) - \frac{\pi}{2} > \lfloor \cos^{-1}x \rfloor + \lfloor \sin^{-1}x \rfloor + \sin^{-1}x \] This simplifies to: \[ \sin^{-1}x > \lfloor \cos^{-1}x \rfloor + \lfloor \sin^{-1}x \rfloor \] ### Step 3: Analyze the ranges - The range of \( \sin^{-1}x \) is \( \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \). - The range of \( \cos^{-1}x \) is \( [0, \pi] \). The greatest integer values for \( \sin^{-1}x \) can be \( -1, 0, 1 \) (since \( \frac{\pi}{2} \approx 1.57 \)). For \( \cos^{-1}x \), the greatest integer values can be \( 0, 1, 2, 3 \) (since \( \pi \approx 3.14 \)). ### Step 4: Set up the inequality From the inequality \( \sin^{-1}x > \lfloor \cos^{-1}x \rfloor + \lfloor \sin^{-1}x \rfloor \), we need to find the values of \( x \) such that this holds true. ### Step 5: Solve for \( x \) 1. **Case 1**: If \( \lfloor \sin^{-1}x \rfloor = 0 \) and \( \lfloor \cos^{-1}x \rfloor = 0 \): \[ \sin^{-1}x > 0 \implies x > 0 \] 2. **Case 2**: If \( \lfloor \sin^{-1}x \rfloor = 1 \) and \( \lfloor \cos^{-1}x \rfloor = 0 \): \[ \sin^{-1}x > 1 \implies x > \sin(1) \] 3. **Case 3**: If \( \lfloor \sin^{-1}x \rfloor = 1 \) and \( \lfloor \cos^{-1}x \rfloor = 1 \): \[ \sin^{-1}x > 2 \implies \text{Not possible since } \sin^{-1}x \leq \frac{\pi}{2} \] ### Conclusion The valid range for \( x \) is: \[ x \in (\sin(1), 1] \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise-2 : One or More than One Answer is/are Correct|6 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise-3 : Comprehension Type Problems|2 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK)|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|29 Videos
  • LIMIT

    VIKAS GUPTA (BLACK BOOK)|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos

Similar Questions

Explore conceptually related problems

Solve {x+1}-x^(2)+2x>0( where {.} denotes fractional part function)

lim_(x rarr1)({x})^((1)/(n pi x)) ,where {.} denotes the fractional part function

Range of the function f (x) =cot ^(-1){-x}+ sin ^(-1){x} + cos ^(-1) {x}, where {.} denotes fractional part function:

Range of the function f(x)=cot^(-1){-x}+sin^(-1){x}+cos^(-1){x} , where {*} denotes fractional part function

The value of lim_(xto0)sin^(-1){x} (where {.} denotes fractional part of x) is

undersetlim_(Xrarr2^(+)) {x}(sin(x-2))/((x-2)^(2))= (where {.} denotes the fractional part function)

The range of f(x) =sin(sin^(-1){x}) . where { ·} denotes the fractional part of x, is

The value of lim_(x rarr0)sin^(-1){x}( where {*} denotes fractional part of x ) is

The function 'g' defined by g(x)= sin(sin^(-1)sqrt({x}))+cos(sin^(-1)sqrt({x}))-1 (where {x} denotes the functional part function) is (1) an even function (2) a periodic function (3) an odd function (4) neither even nor odd

Consider the function f(x)=(cos^(-1)(1-{x}))/(sqrt(2){x}); where {.} denotes the fractional part function,then