Home
Class 12
MATHS
If 3 le a lt 4 then the value of sin^(-...

If `3 le a lt 4` then the value of `sin^(-1)(sin[a])+tan^(-1)(tan[a])+sec^(-1)(sec[a])`, where [x] denotes greatest integer function less than or equal to `x`, is equal to :

A

`3`

B

`2pi-9`

C

`2pi-3`

D

`9-2pi`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression \( \sin^{-1}(\sin[a]) + \tan^{-1}(\tan[a]) + \sec^{-1}(\sec[a]) \) given that \( 3 \leq a < 4 \). ### Step-by-step Solution: 1. **Identify the Greatest Integer Function**: Since \( a \) is in the range \( [3, 4) \), the greatest integer less than or equal to \( a \) is: \[ [a] = 3 \] 2. **Substitute into the Expression**: We can now rewrite the expression using \( [a] \): \[ \sin^{-1}(\sin[a]) + \tan^{-1}(\tan[a]) + \sec^{-1}(\sec[a]) = \sin^{-1}(\sin[3]) + \tan^{-1}(\tan[3]) + \sec^{-1}(\sec[3]) \] 3. **Evaluate Each Term**: - **For \( \sin^{-1}(\sin[3]) \)**: The value of \( \sin[3] \) is \( \sin(3) \). Since \( 3 \) is in the range \( [0, \pi] \), we can directly use: \[ \sin^{-1}(\sin(3)) = 3 \quad \text{(since \( 3 \) is in the range of \( \sin^{-1} \))} \] - **For \( \tan^{-1}(\tan[3]) \)**: The value of \( \tan[3] \) is \( \tan(3) \). The function \( \tan^{-1} \) has a periodicity of \( \pi \), so: \[ \tan^{-1}(\tan(3)) = 3 - \pi \quad \text{(since \( 3 \) is greater than \( \pi \))} \] - **For \( \sec^{-1}(\sec[3]) \)**: The value of \( \sec[3] \) is \( \sec(3) \). The function \( \sec^{-1} \) is defined for \( x \geq 1 \) or \( x \leq -1 \): \[ \sec^{-1}(\sec(3)) = 3 \quad \text{(since \( 3 \) is in the range of \( \sec^{-1} \))} \] 4. **Combine the Results**: Now, substituting back into the expression: \[ \sin^{-1}(\sin[3]) + \tan^{-1}(\tan[3]) + \sec^{-1}(\sec[3]) = 3 + (3 - \pi) + 3 \] Simplifying this gives: \[ = 3 + 3 - \pi + 3 = 9 - \pi \] 5. **Final Result**: Therefore, the value of the expression is: \[ \boxed{3} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise-2 : One or More than One Answer is/are Correct|6 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise-3 : Comprehension Type Problems|2 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK)|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|29 Videos
  • LIMIT

    VIKAS GUPTA (BLACK BOOK)|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(15/2)[x-1]dx= where [x] denotes the greatest integer less than or equal to x

The lim it lim_(x rarr0)(sin[x])/(x), where [x] denotes greatest integer less than or equal to x, is equal to

lim_(x->0)(sin[sec^2x])/(1+[cosx]), where [*] denotes greatest integral function, is

If [sin^(-1)(cos^(-1)(sin^(-1)(tan^(-1)x)))]=1 where [*] denotes the greatest integer function,then x in

The function f(x)=(tan |pi[x-pi]|)/(1+[x]^(2)) , where [x] denotes the greatest integer less than or equal to x, is

The domain of the function f(x)=cos^(-1)[secx] , where [x] denotes the greatest integer less than or equal to x, is

The range of f(x)=[sin x+[cos x+[tan x+[sec x]]]],x in(0,(pi)/(4)), where [.] denotes the greatest integer function less than or equal to x is

The value of int_(1)^(10pi)([sec^(-1)x]) dx (where ,[.] denotes the greatest integer function ) is equal to

The value of int_(0)^(100)[ tan ^(-1)x] d x is equal to (where [.] denotes the greatest integer function)