Home
Class 12
MATHS
If a, b, c, x, y, z are real and a^(2)...

If a, b, c, x, y, z are real and `a^(2)+b^(2) + c^(2)=25, x^(2)+y^(2)+z^(2)=36 and ax+by+cz=30`, then `(a+b+c)/(x+y+z)` is equal to :

A

1

B

`(6)/(5)`

C

`(5)/(6)`

D

`(3)/(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \((a+b+c)/(x+y+z)\) given the conditions: 1. \(a^2 + b^2 + c^2 = 25\) 2. \(x^2 + y^2 + z^2 = 36\) 3. \(ax + by + cz = 30\) ### Step-by-Step Solution: **Step 1: Use Cauchy-Schwarz Inequality** We can apply the Cauchy-Schwarz inequality, which states that: \[ (ax + by + cz)^2 \leq (a^2 + b^2 + c^2)(x^2 + y^2 + z^2) \] Substituting the given values into the inequality: \[ 30^2 \leq (25)(36) \] Calculating both sides: \[ 900 \leq 900 \] This shows that the equality holds, which implies that the vectors \((a, b, c)\) and \((x, y, z)\) are proportional. **Step 2: Set Proportionality Constants** Since the equality holds in the Cauchy-Schwarz inequality, we can say: \[ \frac{a}{x} = \frac{b}{y} = \frac{c}{z} = k \] for some constant \(k\). **Step 3: Express \(a, b, c\) in terms of \(x, y, z\)** From the proportionality, we can express \(a, b, c\) as: \[ a = kx, \quad b = ky, \quad c = kz \] **Step 4: Substitute into the first equation** Now substitute these into the first equation \(a^2 + b^2 + c^2 = 25\): \[ (kx)^2 + (ky)^2 + (kz)^2 = 25 \] This simplifies to: \[ k^2(x^2 + y^2 + z^2) = 25 \] Using \(x^2 + y^2 + z^2 = 36\): \[ k^2(36) = 25 \] Thus, \[ k^2 = \frac{25}{36} \implies k = \frac{5}{6} \quad (\text{since } k \text{ is positive}) \] **Step 5: Find \(a + b + c\)** Now we can find \(a + b + c\): \[ a + b + c = kx + ky + kz = k(x + y + z) = \frac{5}{6}(x + y + z) \] **Step 6: Find \((a + b + c)/(x + y + z)\)** Now we can find the desired ratio: \[ \frac{a + b + c}{x + y + z} = \frac{\frac{5}{6}(x + y + z)}{x + y + z} = \frac{5}{6} \] ### Final Answer: \[ \frac{a + b + c}{x + y + z} = \frac{5}{6} \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR & 3DIMENSIONAL GEOMETRY

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise-2 : One or More than One Answer is/are Correct|21 Videos
  • VECTOR & 3DIMENSIONAL GEOMETRY

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise-3 : Comprehension Type Problems|18 Videos
  • TRIGONOMETRIC EQUATIONS

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise-5 : Subjective Type Problems|9 Videos

Similar Questions

Explore conceptually related problems

If a^(2)+b^(2)+c^(2)=16,x^(2)+y^(2)+z^(2)=25 and ax+by+cz=20 then the value of (a+b+c)/(x+y+z)

If a^(2)+b^(2)+c^(2)=x^(2)+y^(2)+z^(2)=1, then show that ax+by+cz<1

Let a,b,c,x,y,z be real.Given a^(2)+b^(2)+c^(2)=4,x^(2)+y^(2)+z^(2)=9 and ax+by+cz>=6, then the value of expression (a+2b+3c)/(x+2y+3z) is (A)(1)/(3)(B)3(C)(2)/(3) (D) (1)/(2)

If (a^(2)+b^(2)+c^(2))(x^(2)+y^(2)+z^(2))=(ax+by+cz)^(2), then show that x:a=y:b=z:c

If a^x = b^y = c^z and b/a = c/b then (2z)/(x + z) is equal to:

If a, b, c, x, y and z be real numbers and x^(2)+y^(2)+z^(2)=16 , a^(2)+b^(2)+c^(2)=9 and ax+by+cz=12 ; the value of ((a^(3)+b^(3)+c^(3))^((1)/(3)))/((x^(3)+y^(3)+z^(3))^((1)/(3))) is

If a, b, c, x, y and z be real numbers and x^(2)+y^(2)+z^(2)=16 ; a^(2)+b^(2)+c^(2)=9 ; ax+by+cz=12 ; the value of ((a^(3)+b^(3)+c^(3))^((1)/(3)))/((x^(3)+y^(3)+z^(3))^((1)/(3))) is

If a, b, c, x, y and z be real numbers and x^(2)+y^(2)+z^(2)=16 a^(2)+b^(2)+c^(2)=9 ax+by+cz=12 ; the value of [a^(3)+b^(3)+c^(3)]^(1/3) / [x^(3)+y^(3)+z^(3)]^(1/3) is

VIKAS GUPTA (BLACK BOOK)-VECTOR & 3DIMENSIONAL GEOMETRY-Exercise-5 : Subjective Type Problems
  1. If a, b, c, x, y, z are real and a^(2)+b^(2) + c^(2)=25, x^(2)+y^(2)...

    Text Solution

    |

  2. A straight line L intersects perpendicularly both the lines : (x+2)/...

    Text Solution

    |

  3. If hata, hatb and hatc are non-coplanar unti vectors such that [hata ...

    Text Solution

    |

  4. Let OA, OB, OC be coterminous edges of a cubboid. If l, m, n be the sh...

    Text Solution

    |

  5. Let OABC be a tetrahedron whose edges are of unit length. If vec OA = ...

    Text Solution

    |

  6. Let vec v(0) be a fixed vector and vecv(0)=[(1)/(0)]. Then for n ge ...

    Text Solution

    |

  7. If a is the matrix [(1,-3),(-1,1)], then A-(1)/(3)A^(2)+(1)/(9)A^(3)……...

    Text Solution

    |

  8. A sequence of 2xx2 matrices {M(n)} is defined as follows M(n)=[((1)/(...

    Text Solution

    |

  9. Let |veca|=1, |vecb|=1 and |veca+vecb|=sqrt(3). If vec c be a vector ...

    Text Solution

    |

  10. Let vecr=(veca xx vecb)sinx+(vecb xx vec c)cosy+2(vec c xx vec a), whe...

    Text Solution

    |

  11. The plane denoted by P(1) : 4x+7y+4z+81=0 is rotated through a right a...

    Text Solution

    |

  12. ABCD is a regular tetrahedron, A is the origin and B lies on x-axis. A...

    Text Solution

    |

  13. A, B, C, D are four points in the space and satisfy |vec(AB)|=3, |vec(...

    Text Solution

    |

  14. Let OABC be a regular tetrahedron of edge length unity. Its volume be ...

    Text Solution

    |

  15. If veca and vecb are non zero, non collinear vectors and veca(1)=lamb...

    Text Solution

    |

  16. Let P and Q are two points on curve y=log((1)/(2))(x-(1)/(2))+log(2) s...

    Text Solution

    |

  17. Let P and Q are two points on curve y=log((1)/(2))(x-(1)/(2))+log(2) s...

    Text Solution

    |

  18. If a, b, c, l, m, n in R-{0} such that al+bm+cn=0, bl+cm+an=0, cl+am+b...

    Text Solution

    |

  19. Let vec ua n d vec v be unit vectors such that vec uxx vec v+ vec u=...

    Text Solution

    |