Home
Class 12
MATHS
If f(x)=cos(logx), then show that f((1)/...

If `f(x)=cos(logx)`, then show that `f((1)/(x)).f((1)/(y))-(1)/(2)[f((x)/(y))+f(xy)]=0`

Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    SRISIRI PUBLICATION|Exercise EXERCISE(VSAQ)|41 Videos
  • DIFFERENTIATION

    SRISIRI PUBLICATION|Exercise EXERCISE(VSAQ,SAQ & LAQ)|14 Videos
  • HYPERBOLIC FUNCTIONS

    SRISIRI PUBLICATION|Exercise SPQ|8 Videos

Similar Questions

Explore conceptually related problems

If f(x) = cos(log x) , then f(x^(2)) . f(y^(2)) -1/2[f(x^(2)y^(2)) +f(x^(2)/y^(2))]=

If f(x)=sin(logx) , then f(xy)+f(x//y)-2f(x)cos (logy)=

If f(x) = cos (log_(e) x) , then f(x)f(y) -1/2[f(x/y) + f(xy)] has value

If y=f(x) =(x+2)/(x-1)(x ne 1,-2) then show that x=f(y)

If f(x) = 1 + x + x^(2) + …… for |x| lt 1 then show that f^(-1)(x) = (x-1)/(x) .

If y=f(x)=(2x-1)/(x-2), then f(y)=

If f(x) is a function such that f(xy) = f(x)+f(y) and f(x)=