Home
Class 12
MATHS
Prove that |{:(y+z,x,x),(y,z+x,y),(z,z,x...

Prove that `|{:(y+z,x,x),(y,z+x,y),(z,z,x+y):}|=4xyz`

Promotional Banner

Topper's Solved these Questions

  • MATRICES

    SRISIRI PUBLICATION|Exercise II VSAQ,SAQ,LAQ|13 Videos
  • MATRICES

    SRISIRI PUBLICATION|Exercise MISCELLANEOUS|29 Videos
  • MATRICES

    SRISIRI PUBLICATION|Exercise SAPAR PAPER QUESTIONS|32 Videos
  • MATHEMATICAL INDUCTION

    SRISIRI PUBLICATION|Exercise LONG ANSWER QUESTIONS|19 Videos
  • PAIR OF LINES

    SRISIRI PUBLICATION|Exercise MISCELLANEOUS|2 Videos

Similar Questions

Explore conceptually related problems

|(x,1,y+z),(y,1,z+x),(z,1,x+y)|=

Without expanding prove that Delta ={:[( x+y,y+z,z+x) ,( z,x,y),( 1,1,1) ]:} =0

By using properties of determinants , show that : {:[( x,x^(2) , yz) ,( y,y^(2) , zx ) ,( z , z^(2) , xy ) ]:} =( x-y)(y-z) (z-x) (xy+yz+ zx)

If |(x,y,z),(-x,y,z),(x,-y,z)|=k xyz , then k=

Add the product: x(x+y-r),y(x-y+r),z(x-y-z)

a^(x(y-z))xxa^(y(z-x))xxa^(z(x-y)) =____

Verify that x^3 + y^3 + z^3- 3xyz=1/2 (x+y+z)[(x-y)^2+(y-z)^2+(z-x)^2]

SRISIRI PUBLICATION-MATRICES-SHORT ANSWER TYPE QUESTIONS
  1. Show that |{:(bc,b-c,1),(ca,c+a,1),(ab,a+b,1):}|=(a-b)(b-c)(c-a)

    Text Solution

    |

  2. Show that |(b+c,c+a,a+b),(a+b,b+c,c+a)(a,b,c)|=a^(3)+b^(3)+c^(3)-3abc.

    Text Solution

    |

  3. Prove that |{:(y+z,x,x),(y,z+x,y),(z,z,x+y):}|=4xyz

    Text Solution

    |

  4. IF |{:(a,a^2,1+a^3),(b,b^2,1+b^3),(c,c^2,1+c^3):}|=0 , then show that ...

    Text Solution

    |

  5. Without expanding the determinant , prove that |{:(a,a^2,bc),(b,b^2,ca...

    Text Solution

    |

  6. Without expanding the determinant , prove that |{:(ax,by,cz),(x^2,y^2,...

    Text Solution

    |

  7. Without expanding the determinant, prove that |{:(1,bc,b+c),(1,ca,c+a)...

    Text Solution

    |

  8. Show that |{:(a-b,b-c,c-a),(b-c,c-a,a-b),(c-a,a-b,b-c):}|=0

    Text Solution

    |

  9. Show that |{:(1,a,a^2-bc),(1,b,b^2-ca),(1,c,c^2-ab):}|=0

    Text Solution

    |

  10. Let A and B be invertible matrices then prove that (AB)^-1=B^-1A^-1.

    Text Solution

    |

  11. Find the adjoint and the inverse of the matrix A=[{:(1,3,3),(1,4,3),(1...

    Text Solution

    |

  12. Show that the matrix A=[{:(1,2,1),(3,2,3),(1,1,2):}] is non-singular a...

    Text Solution

    |

  13. IF abc ne 0, find the inverse of [{:(a,0,0),(0,b,0),(0,0,c):}]

    Text Solution

    |

  14. IF A=[{:(-1,-2,-2),(2,1,-2),(2,-2,1):}] then show that adj A=3A^T. Als...

    Text Solution

    |

  15. IF A=[{:(3,-3,4),(2,-3,4),(0,-1,1):}] then show that A^-1=A^3.

    Text Solution

    |

  16. IF 3A=[{:(1,2,2),(2,1,-2),(-2,2,-1):}] then show that A^-1=A'.

    Text Solution

    |

  17. Find the rank of A=[{:(0,1,2),(1,2,3),(3,2,1):}] using elementary tran...

    Text Solution

    |

  18. Find the rank of A=[{:(1,2,0,-1),(3,4,1,2),(-2,3,2,5):}] using element...

    Text Solution

    |

  19. If A is a non-singular matrix then prove that A^(-1) = (adjA)/(|A|).

    Text Solution

    |

  20. Show that |{:(a,b,c),(a^(2),b^(2),c^(2)),(a^(2),b^(3),c^(3)):}|=abc(a-...

    Text Solution

    |