Home
Class 12
MATHS
Without expanding the determinant , prov...

Without expanding the determinant , prove that `|{:(a,a^2,bc),(b,b^2,ca),(c,c^2,ab):}|=|{:(1,a^2,a^3),(1,b^2,b^3),(1,c^2,c^3):}|`

Promotional Banner

Topper's Solved these Questions

  • MATRICES

    SRISIRI PUBLICATION|Exercise II VSAQ,SAQ,LAQ|13 Videos
  • MATRICES

    SRISIRI PUBLICATION|Exercise MISCELLANEOUS|29 Videos
  • MATRICES

    SRISIRI PUBLICATION|Exercise SAPAR PAPER QUESTIONS|32 Videos
  • MATHEMATICAL INDUCTION

    SRISIRI PUBLICATION|Exercise LONG ANSWER QUESTIONS|19 Videos
  • PAIR OF LINES

    SRISIRI PUBLICATION|Exercise MISCELLANEOUS|2 Videos

Similar Questions

Explore conceptually related problems

Without expanding the determinant, prove that (i) |{:(a,a^(2),bc),(b,b^(2),ca),(c,c^(2),ab):}|=|{:(1,a^(2),a^(3)),(1,b^(2),b^(3)),(1,c^(2),c^(3)):}| (ii) |{:(ax,by,cz),(x^(2),y^(2),z^(2)),(1,1,1):}|=|{:(a,b,c),(x,y,z),(yz,zx,xy):}| (iii) |{:(1,bc,b+c),(1,ca,c+a),(1,ab,a+b):}|=|{:(1,a,a^(2)),(1,b,b^(2)),(1,c,c^(2)):}|

Without expanding the determinant, prove that |{:(1,bc,b+c),(1,ca,c+a),(1,ab,a+b):}|=|{:(1,a,a^2),(1,b,b^2),(1,c,c^2):}|

Show that |{:(1,a,a^2-bc),(1,b,b^2-ca),(1,c,c^2-ab):}|=0

Without expanding the determinant, prove that {:[( a, a ^(2), bc ),( b ,b ^(2) , ca),( c, c ^(2) , ab ) ]:} ={:[( 1, a^(2) , a^(3) ),( 1,b^(2) , b^(3) ),( 1, c^(2),c^(3)) ]:}

|(1//a,a^(2),bc),(1//b,b^(2),ca),(1//c,c^(2),ab)|=

Without expanding the determinant show that |(b+c,c+a,a+b),(c+a,a+b,b+c),(a+b,b+c,c+a)|=2|(a,b,c),(b,c,a),(c,a,b)|

|(a,b,c),(a^(2),b^(2),c^(2)),(bc,ca,ab)|=

Show that |{:(1,a,a^2),(1,b,b^2),(1,c,c^2):}|=(a-b)(b-c)(c-a)

Show that |{:(1,a,a^2),(1,b,b^2),(1,c,c^2):}|=(a-b)(b-c)(c-a)

Show that |{:(1,a,a^2),(1 ,b,b^2),(1,c,c^2):}| =(a-b)(b-c)(c-a)

SRISIRI PUBLICATION-MATRICES-SHORT ANSWER TYPE QUESTIONS
  1. Prove that |{:(y+z,x,x),(y,z+x,y),(z,z,x+y):}|=4xyz

    Text Solution

    |

  2. IF |{:(a,a^2,1+a^3),(b,b^2,1+b^3),(c,c^2,1+c^3):}|=0 , then show that ...

    Text Solution

    |

  3. Without expanding the determinant , prove that |{:(a,a^2,bc),(b,b^2,ca...

    Text Solution

    |

  4. Without expanding the determinant , prove that |{:(ax,by,cz),(x^2,y^2,...

    Text Solution

    |

  5. Without expanding the determinant, prove that |{:(1,bc,b+c),(1,ca,c+a)...

    Text Solution

    |

  6. Show that |{:(a-b,b-c,c-a),(b-c,c-a,a-b),(c-a,a-b,b-c):}|=0

    Text Solution

    |

  7. Show that |{:(1,a,a^2-bc),(1,b,b^2-ca),(1,c,c^2-ab):}|=0

    Text Solution

    |

  8. Let A and B be invertible matrices then prove that (AB)^-1=B^-1A^-1.

    Text Solution

    |

  9. Find the adjoint and the inverse of the matrix A=[{:(1,3,3),(1,4,3),(1...

    Text Solution

    |

  10. Show that the matrix A=[{:(1,2,1),(3,2,3),(1,1,2):}] is non-singular a...

    Text Solution

    |

  11. IF abc ne 0, find the inverse of [{:(a,0,0),(0,b,0),(0,0,c):}]

    Text Solution

    |

  12. IF A=[{:(-1,-2,-2),(2,1,-2),(2,-2,1):}] then show that adj A=3A^T. Als...

    Text Solution

    |

  13. IF A=[{:(3,-3,4),(2,-3,4),(0,-1,1):}] then show that A^-1=A^3.

    Text Solution

    |

  14. IF 3A=[{:(1,2,2),(2,1,-2),(-2,2,-1):}] then show that A^-1=A'.

    Text Solution

    |

  15. Find the rank of A=[{:(0,1,2),(1,2,3),(3,2,1):}] using elementary tran...

    Text Solution

    |

  16. Find the rank of A=[{:(1,2,0,-1),(3,4,1,2),(-2,3,2,5):}] using element...

    Text Solution

    |

  17. If A is a non-singular matrix then prove that A^(-1) = (adjA)/(|A|).

    Text Solution

    |

  18. Show that |{:(a,b,c),(a^(2),b^(2),c^(2)),(a^(2),b^(3),c^(3)):}|=abc(a-...

    Text Solution

    |

  19. Show that |{:(1,a^2,a^3),(1,b^2,b^3),(1,c^2,c^3):}| =(a-b)(b-c)(c-a)(a...

    Text Solution

    |

  20. Show that |(a+b+2c,a,b),(c,b+c+2a,b),(c,a,c+a+2b)|=2(a+b+c)^(3).

    Text Solution

    |