Home
Class 12
MATHS
Without expanding the determinant , prov...

Without expanding the determinant , prove that `|{:(ax,by,cz),(x^2,y^2,z^2),(1,1,1):}|=|{:(a,b,c),(x,y,z),(yz,zx,xy):}|`

Promotional Banner

Topper's Solved these Questions

  • MATRICES

    SRISIRI PUBLICATION|Exercise II VSAQ,SAQ,LAQ|13 Videos
  • MATRICES

    SRISIRI PUBLICATION|Exercise MISCELLANEOUS|29 Videos
  • MATRICES

    SRISIRI PUBLICATION|Exercise SAPAR PAPER QUESTIONS|32 Videos
  • MATHEMATICAL INDUCTION

    SRISIRI PUBLICATION|Exercise LONG ANSWER QUESTIONS|19 Videos
  • PAIR OF LINES

    SRISIRI PUBLICATION|Exercise MISCELLANEOUS|2 Videos

Similar Questions

Explore conceptually related problems

Without expanding the determinant, prove that (i) |{:(a,a^(2),bc),(b,b^(2),ca),(c,c^(2),ab):}|=|{:(1,a^(2),a^(3)),(1,b^(2),b^(3)),(1,c^(2),c^(3)):}| (ii) |{:(ax,by,cz),(x^(2),y^(2),z^(2)),(1,1,1):}|=|{:(a,b,c),(x,y,z),(yz,zx,xy):}| (iii) |{:(1,bc,b+c),(1,ca,c+a),(1,ab,a+b):}|=|{:(1,a,a^(2)),(1,b,b^(2)),(1,c,c^(2)):}|

Without expanding prove that Delta ={:[( x+y,y+z,z+x) ,( z,x,y),( 1,1,1) ]:} =0

By using properties of determinants , show that : {:[( x,x^(2) , yz) ,( y,y^(2) , zx ) ,( z , z^(2) , xy ) ]:} =( x-y)(y-z) (z-x) (xy+yz+ zx)

Using the property of determinants and without expanding {:[( b+c,q+r,y+z),( c+a,r+p,z+x),( a+b,p+q,x+y) ]:}=2 {:[(a,p,x),( b,q,y),(c,r,z)]:}

Using the property of determinants and without expanding {:[( x,a,x+a),( y,b,y+b),(z,c,z+c)]:} =0

Using Cofactors of elements of third column , evaluate , Delta ={:[( 1,x,yz),(1,y,zx),( 1,z,xy) ]:}

Prove that |{:((1+ax)^(2),(1+ay)^(2),(1+az)^(2)),((1+bx)^(2),(1+by)^(2),(1+bz)^(2)),((1+cx)^(2),(1+cy)^(2),(1+cz)^(2)):}|=2(a-b)(b-c)(c-a)(x-y)(y-z)(z-x) .

The coefficient of x^2 y^3 z^4 in (ax-by+cz)^9 is

SRISIRI PUBLICATION-MATRICES-SHORT ANSWER TYPE QUESTIONS
  1. IF |{:(a,a^2,1+a^3),(b,b^2,1+b^3),(c,c^2,1+c^3):}|=0 , then show that ...

    Text Solution

    |

  2. Without expanding the determinant , prove that |{:(a,a^2,bc),(b,b^2,ca...

    Text Solution

    |

  3. Without expanding the determinant , prove that |{:(ax,by,cz),(x^2,y^2,...

    Text Solution

    |

  4. Without expanding the determinant, prove that |{:(1,bc,b+c),(1,ca,c+a)...

    Text Solution

    |

  5. Show that |{:(a-b,b-c,c-a),(b-c,c-a,a-b),(c-a,a-b,b-c):}|=0

    Text Solution

    |

  6. Show that |{:(1,a,a^2-bc),(1,b,b^2-ca),(1,c,c^2-ab):}|=0

    Text Solution

    |

  7. Let A and B be invertible matrices then prove that (AB)^-1=B^-1A^-1.

    Text Solution

    |

  8. Find the adjoint and the inverse of the matrix A=[{:(1,3,3),(1,4,3),(1...

    Text Solution

    |

  9. Show that the matrix A=[{:(1,2,1),(3,2,3),(1,1,2):}] is non-singular a...

    Text Solution

    |

  10. IF abc ne 0, find the inverse of [{:(a,0,0),(0,b,0),(0,0,c):}]

    Text Solution

    |

  11. IF A=[{:(-1,-2,-2),(2,1,-2),(2,-2,1):}] then show that adj A=3A^T. Als...

    Text Solution

    |

  12. IF A=[{:(3,-3,4),(2,-3,4),(0,-1,1):}] then show that A^-1=A^3.

    Text Solution

    |

  13. IF 3A=[{:(1,2,2),(2,1,-2),(-2,2,-1):}] then show that A^-1=A'.

    Text Solution

    |

  14. Find the rank of A=[{:(0,1,2),(1,2,3),(3,2,1):}] using elementary tran...

    Text Solution

    |

  15. Find the rank of A=[{:(1,2,0,-1),(3,4,1,2),(-2,3,2,5):}] using element...

    Text Solution

    |

  16. If A is a non-singular matrix then prove that A^(-1) = (adjA)/(|A|).

    Text Solution

    |

  17. Show that |{:(a,b,c),(a^(2),b^(2),c^(2)),(a^(2),b^(3),c^(3)):}|=abc(a-...

    Text Solution

    |

  18. Show that |{:(1,a^2,a^3),(1,b^2,b^3),(1,c^2,c^3):}| =(a-b)(b-c)(c-a)(a...

    Text Solution

    |

  19. Show that |(a+b+2c,a,b),(c,b+c+2a,b),(c,a,c+a+2b)|=2(a+b+c)^(3).

    Text Solution

    |

  20. Show that |{:(a-b-c," "2a," "2a),(" "2b,b-c-a," "2b),(" "2c," "2...

    Text Solution

    |