Home
Class 12
MATHS
Prove that cos 48^(@) . Cos 12^(@) =(3+s...

Prove that `cos 48^(@) . Cos 12^(@) =(3+sqrt5)/(8)`.

Text Solution

Verified by Experts

The correct Answer is:
`=(1)/(2)[(2+sqrt5+1)/(4)]=(3+sqrt5)/(8)=R.H.S`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIONS, TRANSFORMATIONS

    SRISIRI PUBLICATION|Exercise LAQ|64 Videos
  • TRIGONOMETRIC RATIONS, TRANSFORMATIONS

    SRISIRI PUBLICATION|Exercise LAQ|64 Videos
  • TRIGONOMETRIC EQUATIONS

    SRISIRI PUBLICATION|Exercise SPQ|8 Videos

Similar Questions

Explore conceptually related problems

Prove that sin 78^(@) + cos132^(@) = (sqrt(5)-1)/(4) .

Prove that cos48^@.cos12^@=(3+sqrt5)/8 .

8 cos^(3) 20^(@) -6 cos 20^(@) =

8 cos^(3) 10^(@) -6 cos 10^(@) =

Prove that cos ^(2). (pi)/(8) + cos ^(2). (3pi)/(8)+ cos ^(2). (5 pi )/(8)+ cos ^(2). (7 pi)/(8)=2

Prove that cos 20^(@) cos 40^(@) - sin5^(@) sin 25^(@) = (sqrt(3)+1)/(4) .

Prove that 4(cos66^(@)+sin84^(@)) = sqrt(3) + sqrt(15) .

Prove that cos ^(2) x + cos ^(2) (x + (pi)/(3)) + cos ^(2) (x - (pi)/(3)) = 3/2.

Prove that cos 12^(@) + cos 84^(@) +cos 132^(@) + cos 156^(@) =-1//2

Prove that 4cos12^(@)cos48^(@)cos72^(@)=cos36^(@) .