Home
Class 12
MATHS
If alpha,beta are the solutions of the ...

If `alpha,beta` are the solutions of the equation `acostheta+bsintheta=c, " where "a,b,c inRand " if " a^(2)+b^(2)gt0,cosalphanecosbeta and sin alphane sinbeta` then show that (i) `sinalpha+sinbeta=(2bc)/(a^(2)+b^(2))` (ii) `sinalpha.sinbeta=(c^(2)-a^(2))/(a^(2)+b^(2))`

Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS

    SRISIRI PUBLICATION|Exercise SPQ|8 Videos
  • TRANSFORMATION OF AXES

    SRISIRI PUBLICATION|Exercise 2 D (SAQ)|2 Videos
  • TRIGONOMETRIC RATIONS, TRANSFORMATIONS

    SRISIRI PUBLICATION|Exercise LAQ|64 Videos

Similar Questions

Explore conceptually related problems

If alpha,beta are the solutions of the equation acostheta+bsintheta=c, " where "a,b,c inRand " if " a^(2)+b^(2)gt0,cosalphanecosbeta and sin alphane sinbeta then S.T sinalpha+sinbeta=(2bc)/(a^(2)+b^(2))

If alpha, beta are solutions of a cos theta + b sin theta = c where a, b, c in R and a^(2) + b^(2) gt 0, cos alpha ne cos beta, sin alpha ne sin beta then prove that sin alpha + sin beta = (2bc)/(a^(2) + b^(2))

If alpha, beta are solutions of a cos theta + b sin theta = c where a, b, c in R and a^(2) + b^(2) gt 0, cos alpha ne cos beta, sin alpha ne sin beta then prove that sin alpha sin beta = (c^(2)-a^(2))/(a^(2) + b^(2))

If alpha, beta are solutions of a cos theta + b sin theta = c where a, b, c in R and a^(2) + b^(2) gt 0, cos alpha ne cos beta, sin alpha ne sin beta then prove that cos alpha cos beta = (c^(2) - b^(2))/(a^(2) + b^(2))

If alpha, beta are solutions of a cos theta + b sin theta = c where a, b, c in R and a^(2) + b^(2) gt 0, cos alpha ne cos beta, sin alpha ne sin beta then prove that cos alpha + cos beta = (2ac)/(a^(2) + b^(2))

If alpha, beta are the solutions of a cos 2theta + b sin 2theta = c , then tan alpha tan beta=