Home
Class 12
MATHS
If Sin^(-1)(2p)/(1+p^(2)) - Cos^(-1)((1-...

If `Sin^(-1)(2p)/(1+p^(2)) - Cos^(-1)((1-q^(2))/(1+q^(2))) = Tan^(-1) (2x)/(1-x^(2))`, then prove that `x = (p-q)/(1+pq)`

Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    SRISIRI PUBLICATION|Exercise SAQ (1D Star Q)|22 Videos
  • HYPERBOLIC FUNCTIONS

    SRISIRI PUBLICATION|Exercise SPQ|8 Videos
  • IPE SCANNER (TEXTUAL BITS)

    SRISIRI PUBLICATION|Exercise APPLICATIONS OF DERIVATIVES|48 Videos

Similar Questions

Explore conceptually related problems

Solve 3Sin^(-1)((2x)/(1+x^(2))) - 4 Cos^(-1)((1-x^(2))/(1+x^(2)))+2Tan^(-1)((2x)/(1-x^(2))) = (pi)/3

IF 3 sin^(-1)((2x)/(1+x^(2)))-4cos^(-1)((1-x^(2))/(1+x^(2)))+ 2tan^(-1)((2x)/(1-x^(2)))=(pi)/3 then x=

tan[1/2Sin^(-1)((2x)/(1+x^(2)))-1/2Cos^(-1)((1-y^(2))/(1+y^(2)))]=

tan[1/2sin^(-1)((2x)/(1+x^(2)))-1/2cos^(-1)((1-y^(2))/(1+y^(2)))]=

If x in (-1,1) prove that 2Tan^(-1)x="Tan"^(-1)(2x)/(1-x^(2))

int(2x^(12)+5x^(9))/((x^(5)+x^(3)+1)^(3))dx=(x^(p))/(q(x^(5)+x^(3)+1)^(r))+c , then p-q-r =

Prove that sin[Cot^(-1) (2x)/(1-x^2)+Cos^(-1)((1-x^(2))/(1+x^(2)))]=1 .