Home
Class 12
MATHS
If f:R-{pm1}rarrR is defined by f(x)=lo...

If `f:R-{pm1}rarrR` is defined by `f(x)=log|(1+x)/(1-x)|, "thenS.T "f((2x)/(1+x^(2)))=2f(x)`

Promotional Banner

Topper's Solved these Questions

  • IPE:MAY-2018[AP]

    SRISIRI PUBLICATION|Exercise SECTION-B (SAQs)|7 Videos
  • IPE:MAY-2018[AP]

    SRISIRI PUBLICATION|Exercise SECTION-C (SAQs)|7 Videos
  • IPE:MAY-2018(TS)

    SRISIRI PUBLICATION|Exercise SECTION-C|13 Videos
  • LIMITS & CONTINUITY

    SRISIRI PUBLICATION|Exercise VSAQ,SAQ (2D HARD Q)(3D MISQ)|5 Videos

Similar Questions

Explore conceptually related problems

If f:R-(pm1)toR is defined by f(x)=log|(1+x)/(1-x)| , then show that f((2x)/(1+x^(2)))=2f(x) .

If f:R rarr(0, 1] is defined by f(x)=(1)/(x^(2)+1) , then f is

If f:R rarrR is defined by f(x)=(2x+1)/(3) then f^(-1)(x)=

f:R rarrR defined by f(x)=e^(|x|) is

If f:R-{5//2}rarr R-{-1} defined by f(x)=(2x+3)/(5-2x) then f^(-1)(x)=

If f:R rarrR is defined by f(x)=x^(2)-3x+2 , then f(x^(2)-3x-2)=

If f(x)=log.(1+x)/(1-x) then f((x_(1)+x_(2))/(1+x_(1)x_(2)))=

If f: R - {0} to R is defined by f(x) = x^(3)-1/(x^3) , then S.T f(x) + f(1//x) = 0 .