Home
Class 12
MATHS
For any two vectors bar(a)andbar(b) , s...

For any two vectors `bar(a)andbar(b)` , show that
`(1+|bara|^(2))(1+|barb|^2)=|1-bar(a).bar(b)|^(2)+|bar(a)+bar(b)+bar(a)xxbar(b)|^(2)`

Text Solution

Verified by Experts

The correct Answer is:
`(1+|bar(a)|)^(2)+(1+|bar(b)|)^(2)` = LHS.
Promotional Banner

Topper's Solved these Questions

  • SOLVED MODEL PAPER-2

    SRISIRI PUBLICATION|Exercise Section C|7 Videos
  • SOLVED MODEL PAPER-2

    SRISIRI PUBLICATION|Exercise SOLVED MODEL PAPER-2(MATHS-1B)|24 Videos
  • SOLVED MODEL PAPER-2

    SRISIRI PUBLICATION|Exercise SOLVED MODEL PAPER-2(MATHS-1B)|24 Videos
  • SOLVED MODEL PAPER-1

    SRISIRI PUBLICATION|Exercise SOLVED MODEL PAPER-1(MATHS-1B)|23 Videos
  • SOLVED MODEL PAPER-3

    SRISIRI PUBLICATION|Exercise SECTION-C|7 Videos

Similar Questions

Explore conceptually related problems

For any vector bar(a) show that |bar(a) xx bar(i)|^(2) + |bar(a) xx bar(j)|^(2) + |bar(a) xx bar(k)|^(2)= 2|bar(a)|^(2)

If |bar(a)|=2, |bar(b)|=3, (bar(a), bar(b))= pi//6 , then find (bar(a) xx bar(b))^(2)

Show that (bar(a)+bar(b)) . [(bar(b)+bar(c)) xx (bar(c )+bar(a))] = 2[bar(a)bar(b)bar(c )] .

If bar(a)+bar(b)+bar(c)=bar(0) then prove that bar(a)xxbar(b)=bar(b)xxbar(c)=bar(c)xxbar(a) .

Prove that the following four points are coplanar. i) 4bar(i)+5bar(j)+bar(k), -bar(j)-bar(k), 3bar(i)+9bar(j)+4bar(k), -4bar(i)+4bar(j)+4bar(k) ii) -bar(a)+4bar(b)-3bar(c), 3bar(a)+2bar(b)-5bar(c), -3bar(a)+8bar(b)-5bar(c), -3bar(a)+2bar(b)+bar(c)" ("bar(a), bar(b), bar(c) are non-coplanar vectors) iii) 6bar(a)+2bar(b)-bar(c), 2bar(a)-bar(b)+3bar(c), -bar(a)+2bar(b)-4bar(c), -12bar(a)-bar(b)-3bar(c)" ("bar(a), bar(b), bar(c) are non-coplanar vectors)

The points 2bar(a)+3bar(b)+bar(c), bar(a)+bar(b), 6bar(a)+11bar(b)+5bar(c) are

i) bar(a), bar(b), bar(c) are pairwise non zero and non collinear vectors. If bar(a)+bar(b) is collinear with bar(c) and bar(b)+bar(c) is collinear with bar(a) then find the vector bar(a)+bar(b)+bar(c) . ii) If bar(a)+bar(b)+bar(c)=alphabar(d), bar(b)+bar(c)+bar(d)=betabar(a) and bar(a), bar(b), bar(c) are non coplanar vectors, then show that bar(a)+bar(b)+bar(c)+bar(d)=bar(0) .