Home
Class 12
MATHS
If ABCDEF is a regular hexagon with cen...

If ABCDEF is a regular hexagon with centre O , then P.T `bar(AB)+bar(AC)+bar(AD)+bar(AE)+bar(AF)=3bar(AD)=6bar(AO)`

Promotional Banner

Topper's Solved these Questions

  • QUESTION PAPER

    SRISIRI PUBLICATION|Exercise Section C|42 Videos
  • QUESTION PAPER

    SRISIRI PUBLICATION|Exercise SECTION -A|17 Videos
  • QUESTION PAPER

    SRISIRI PUBLICATION|Exercise SECTION - C|36 Videos
  • PROPERTIES OF TRIANGLES

    SRISIRI PUBLICATION|Exercise LAQ ,SAQ,VSAQ (2DHARDQ) (3DMIS.Q)|44 Videos
  • SOLVED MODEL PAPER - 4

    SRISIRI PUBLICATION|Exercise Long Answer Questions|9 Videos

Similar Questions

Explore conceptually related problems

ABCDEF is a regualar hexagon whose centre is O. Then bar(AB)+bar(AC)+bar(AD)+bar(AE)+bar(AF) is

ABCDEF is a regular hexagon. O is centre and P.V. of A, B are bar(i)-bar(j)+2bar(k), 2bar(i)+bar(j)+bar(k)" then "bar(BC)=

ABCDEF be a regular hexagon in the xy plane and bar(AB)=4bari . Then bar(CD)=

ABCDEF is a regular hexagon. bar(AB)+bar(AC)+bar(AD)+bar(EA)+bar(FA)=

ABCDEF is a regular hexagon. If bar(AB)+bar(AE)+bar(BC)+bar(DC)+bar(ED)+bar(AC)=lambdabar(AC)" then "lambda=

ABCDEF is a regular hexagon. If bar(AB)=bar(a), bar(BC)=bar(b)" then "bar(FA)=

ABCDEF is a regular hexagon. If bar(AB)=bar(a), bar(BC)=bar(b)" then "bar(CE)=

ABCDE is a pentagon then bar(AB)+bar(AE)+bar(BC)+bar(DC)+bar(ED)+bar(AC)=

ABCDE is a pentagon. If the sum of the vectors bar(AB),bar(AE), bar(BC), bar(DC), bar(ED), bar(AC) is lambda bar(AC) then find the value of lambda .

SRISIRI PUBLICATION-QUESTION PAPER -Section B
  1. Show that |(b+c,c+a,a+b),(a+b,b+c,c+a)(a,b,c)|=a^(3)+b^(3)+c^(3)-3abc.

    Text Solution

    |

  2. If diagA=[a(1),a(2),a(3)], then for any integer n ge 1 show that A^(n)...

    Text Solution

    |

  3. If ABCDEF is a regular hexagon with centre O , then P.T bar(AB)+bar(A...

    Text Solution

    |

  4. If the points whose position vectors are 3bar(i) -2bar(j)-bar(k), 2bar...

    Text Solution

    |

  5. Find the vector equation of the plane passing through the points. 4bar...

    Text Solution

    |

  6. In the two dimensional plane, prove by using vector methods, the equat...

    Text Solution

    |

  7. If bara,barb,barc are non-coplaner, then show that the vectors bara -b...

    Text Solution

    |

  8. Find the area of the triangle formed with the points A(1,2,3), B(2,3,1...

    Text Solution

    |

  9. If bar(a)=2bar(i)+bar(j)-bar(k), bar(b)=-bar(i)+2bar(j)-4bar(k), bar(c...

    Text Solution

    |

  10. Prove that angle in a semi circle is a rightangle by using Vector meth...

    Text Solution

    |

  11. If (sin(alpha+beta))/(sin(alpha-beta)) = (a+b)/(a-b), then prove that ...

    Text Solution

    |

  12. Show that sin A= (sin 3A) /(1+2 cos 2A). Hence find the value of sin 1...

    Text Solution

    |

  13. Show that 1/(sin 10^(@)) - (sqrt(3))/(cos 10^(@)) = 4.

    Text Solution

    |

  14. Show that sin ^(4). (pi)/(8)+ sin ^(4) .(3pi)/(8) sin ^(4). (5pi)/(8)...

    Text Solution

    |

  15. Prove that (1+cos""pi/10)(1+cos""(3pi)/10)(1+cos""(7pi)/10)(1+cos""(9p...

    Text Solution

    |

  16. If cos alpha =(3)/(5) and cos beta =(5)/(13) and alpha, beta are acut...

    Text Solution

    |

  17. If cos alpha =(3)/(5) and cos beta =(5)/(13) and alpha, beta are acut...

    Text Solution

    |

  18. If alpha,beta are the solutions of the equation acostheta+bsintheta=c...

    Text Solution

    |

  19. If alpha,beta are the solutions of the equation acostheta+bsintheta=c...

    Text Solution

    |

  20. If A is not an integral multiple of (pi), prove that cos A cos 2A cos ...

    Text Solution

    |