Home
Class 11
MATHS
[" Let "a=(1^(2))/(1)+(2^(2))/(3)+(3^(2)...

[" Let "a=(1^(2))/(1)+(2^(2))/(3)+(3^(2))/(5)+....+((1001)^(2))/(2001)],[b=(1^(2))/(3)+(2^(2))/(5)+(3^(2))/(7)+....+((1001)^(2))/(2003)" .The closest integer of "a-b" is "],[[" (A) "500," (B) "501],[" (C) "1000," (D) "1001]]

Promotional Banner

Similar Questions

Explore conceptually related problems

Let a=(1^(2))/(1)+(2^(2))/(3)+(3^(2))/(5)+....+((1001)^(2))/(2001),b=(1^(2))/(3)+(2^(2))/(5)+(3^(2))/(7)+....+((1001)^(2))/(2003) The closest of a-b is

x=(1^(1))/(1)+(2^(2))/(3)+...(1001^(2))/(2001),y=(1^(1))/(3)+(2^(2))/(5)+...(1001^(2))/(2003) then ([x-y])/(10) is

If x = (1 ^(2))/(1) =+ (2 ^(2))/( 3) + (3 ^(2))/( 5) +.....+ (1001 ^(2))/( 2001) , y = (1^(2))/(3) + (2 ^(2))/( 5) + (3 ^(2))/(7) + .....+ (1001 ^(2))/(2003), then ([x -y])/(10) is equal to where [.] denotes greatest integer function)

2(2.001)^(3)+7(2.001)+1~~…

If A=[(2)/(3)1(5)/(3)(1)/(3)(2)/(3)(4)/(3)(7)/(3)2(2)/(3)] and B=[(2)/(3)(2)/(5)1(1)/(5)(2)/(5)(4)/(5)(4)/(5)(7)/(3)(6)/(5)(2)/(5)], then compute 3A_(-)=5B

A=[[(2)/(3),1,(5)/(3)(1)/(3),(2)/(3),(4)/(3)(7)/(3),2,(2)/(3)]] and B=[[(2)/(5),(3)/(5),1(1)/(5),(2)/(5),(4)/(5)(7)/(5),(6)/(5),(2)/(5)]]