Home
Class 12
MATHS
f ={(x,x^2/(x^2+1)): x in R} ,be a funct...

`f ={(x,x^2/(x^2+1)): x in R}` ,be a function R into R,range of 'f' 1)[0,1) 2) `(-oo,oo)` 3) `(0,oo)` 4) `R^+`

Promotional Banner

Similar Questions

Explore conceptually related problems

The function f(x)=x^9+3x^7+64 is increasing on (a) R (b) (-oo,\ 0) (c) (0,\ oo) (d) R_0

The range of the function f(x)=|x-1| is A. (-oo,0) B. [0,oo) C. (0,oo) D. R

The range of the function f(x)=|x-1| is A. (-oo,0) B. [0,oo) C. (0,oo) D. R

The range of the function f(x)=(sin(pi[x]))/(x^(2)+1) (Where [ ] denotes greatest integer function) is (A) {0} (B) (-oo,oo) (C) (0,1) (D) R-{0}

The function f(x)=x^(9)+3x^(7)+64 is increasing on (a) R(b)(-oo,0)(c)(0,oo) (d) R_(0)

Let f be the function f(x)=cos x-(1-(x^(2))/(2))* Then f(x) is an increasing function in (0,oo)f(x) is a decreasing function in (-oo,oo)f(x) is an increasing function in (-oo,oo)f(x) is a decreasing function in (-oo,0)

The function f:[0,oo] to R given by f(x)=(x)/(x+1) is

Let f be the function f(x)=cosx-(1-(x^2)/2)dot Then f(x) is an increasing function in (0,oo) f(x) is a decreasing function in (-oo,oo) f(x) is an increasing function in (-oo,oo) f(x) is a decreasing function in (-oo,0)

IF the function f(x) =sqrt(x^2+kx+1)/(x^2-k) is continuous for every x epsilon R then 1) kepsilon [-2,0) 2) kepsilon (0,oo) 3) kepsilon (-oo,0) 4) kepsilon R

Consider the function y=f(x) satisfying the condition f(x+(1)/(x))=x^(2)+1/x^(2)(x!=0) Then the domain of f(x) is R domain of f(x) is R-(-2,2) range of f(x) is [-2,oo] range of f(x) is (2,oo)