Home
Class 12
MATHS
If veca, vecb and vec c are unit vectors...

If `veca, vecb` and `vec c` are unit vectors satisfying `|veca- vecb|^2+|vecb-vec c|^2+ |vec c-veca|^2 = 9` then `|2veca+7vecb+7vec c|=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If veca, vecb, vec c are unit vectors, then the value of |veca-2vecb|^(2)+|vecb-2vec c|^(2)+|vec c-2 vec a|^(2) does not exceed to :

If [veca+vecb, vecb+vec c, vec c+veca]=8 then [veca, vecb, vec c] is

If veca, vecb, vec c are unit vectors, then the value of |veca-2vecb|^(2)+|vecb-2vec c|^(2)+|vec c-2 vec a|^(2) does not exceed to : (a) 9 (b) 12 (c) 18 (d) 21

veca, vecb, vec c are three vectors such that veca + vecb + vec c = vec0, |veca| =1, |vecb| =2, |vec c|=3, then : veca.vecb + vecb .vecc+ vecc.veca is equal to :

If veca , vecb ,vec c are the 3 vectors such that |veca| = 3, |vecb| = 4,|vec c| = 5, |veca + vecb + vec c | = 0 then the value of veca.vecb + vecb.vec c + vec c .vec a is :

If veca, vecb, vecc are three vectors such that veca + vecb + vecc= vec0 and |veca | =2, |vecb|=3, |vecc| = 5, then value of veca. vecb+vecb.vec c+vec c. veca is :

If veca,vecb,vecc are coplanar vectors then find value of [veca-vecb+vec2c vecb-vec c+2veca veca+2vecb-vec c]

If veca,vecb,vecc are coplanar vectors then find value of [veca-vecb+vec2c vecb-vec c+2veca veca+2vecb-vec c]

i. If vec a , vec b and vec c are non-coplanar vectors, prove that vectors 3veca -7vecb -4 vecc ,3 veca -2vecb + vecc and veca + vecb +2 vecc are coplanar.

If veca, vecb and vecc are unit coplanar vectors, then the scalar triple product : [2veca-vecb, vec2b-vecc,vec2c-veca]=