Home
Class 11
MATHS
If y=x^((logx)^log(logx)) then (dy)/(dx)...

If `y=x^((logx)^log(logx))` then `(dy)/(dx)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=(xlogx)^(log(logx)) , then (dy)/(dx) is

If y=x^(logx)+(logx)^x then find (dy)/(dx)

If y=x^(logx)+(logx)^x then find (dy)/(dx)

If y=log(log(logx^3)) then (dy)/(dx)=

If y=log(log(logx^3)) then (dy)/(dx)=

If y=x^(logx) ,then (dy)/(dx)=

If y=x^((logx) then (dy)/(dx)=

If y= (log x) ^(logx) ,then (dy)/(dx)=

If y=x^(n)logx+x(logx)^(n)," then "(dy)/(dx) is equal to

If y=x^((logx)^("log"(logdotx))),t h e n(dy)/(dx)i s (a) y/x(1n x^(x-1))+21 nx1n(1nx)) (b) y/x(logx)^("log"(logx))(2log(logx)+1) (c) y/(x1nx)[(1nx)^2+21 n(1nx)] (d) y/x(logy)/(logx)[2log(logx)+1]