Home
Class 12
MATHS
sum cos^2 alpha1=sum cos^2beta1= sum cos...

`sum cos^2 alpha_1=sum cos^2beta_1= sum cos^2 gamma_1=1; sum cosalpha_1 cosbeta_1= sum cosbeta_1 cos gamma_1= sum cos alpha_1 cos gamma_1=0` then `|[cos alpha_1, cos alpha_2, cos alpha_3] , [cos beta_1, cos beta_2, cos beta_3] , [cos gamma_1, cos gamma_2, cos gamma_3]|^2=` (i)`1` (ii)`-1` (iii)`0` (iv) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

det [[1, cos (beta-alpha), cos (gamma-alpha) cos (alpha-beta), 1, cos (gamma-beta) cos (beta-alpha), cos (beta-gamma), 1]] =

If cos alpha+ cos beta+ cos gamma + cos alpha cos beta cos gamma=0 , show that sin alpha (1+ cos beta cos gamma)=+- sin beta sin gamma .

lfsin alpha + sin beta + sin gamma = 0 = cos alpha + cos beta + cos gamma then sum cos (alpha-beta) =

If alpha+beta=gamma. then cos^(2)alpha+cos^(2)beta+cos^(2)gamma-2 cos alpha cos beta cos gamma=

If alpha+beta=gamma prove that cos^(2)alpha+cos^(2)beta+cos^(2)gamma=1+2cos alpha cos beta cos gamma

Let cos(alpha-beta) + cos(beta - gamma) + cos(gamma - alpha)= -3/2 , then the value of cos alpha + cos beta + cos gamma is

If cos alpha + cos beta + cos gamma = 0 = sin alpha + sin beta + sin gamma then show that cos 3 alpha + cos 3 beta + cos 3 gamma = 3 cos ( alpha + beta + gamma)

If cos alpha + cos beta + cos gamma = sin alpha + sin beta + sin gamma = 0 , show that cos 3alpha + cos 3 beta + cos gamma = 3 cos (alpha + beta + gamma) and

If alpha,beta and gamma are such that alpha+beta+gamma=0, then |(1,cos gamma,cosbeta),(cosgamma,1,cos alpha),(cosbeta,cos alpha,1)|

If |{:(1,cos alpha, cos beta),(cos alpha, 1 , cos gamma ),(cos beta, cos gamma , 1):}|=|{:(0,cos alpha, cos beta),(cos alpha , 0 , cos gamma),(cos beta, cos gamma, 0):}| then the value of cos^2 alpha + cos^2 beta + cos^2 gamma is :