Home
Class 9
MATHS
x^(2)-(1)/(8)+(x)/(4)...

x^(2)-(1)/(8)+(x)/(4)

Promotional Banner

Similar Questions

Explore conceptually related problems

Check whether the following are quadratic equations : (1) (x-1)^(2)=2(x-3) (2) x^(2)-2x=(-2)(3-x) (3) (x-2)(x+1)=(x-1)(x+3) (4) (x-3)(2x+1)=x(x+5) (5) (2x-1)(x-3)=(x+5)(x-1) (6) x^(2)+3x+1=(x-2)^(2) (7) (x+2)^(3)=2x(x^(2)-1) (8) x^(3)-4x^(2)-x+1=(x-2)^(3)

Factorize x^(2)+(x)/(4)-(1)/(8)

x^(2)+(x)/(4)-(1)/(8)

The expression (1)/(x-1)-(1)/(x+1)-(2)/(x^(2)+1)-(4)/(x^(4)+1) is equal to (8)/(x^(8)+1)( b) (8)/(x^(8)-1)( c) (8)/(x^(7)-1) (d) (8)/(x^(7)+1)

The coefficient of x^(8) in the expasnsion of (1+(x^(2))/(2!)+(x^(4))/(4!)+(x^(6))/(6!)+(x^(8))/(8!))^(2) is

The coefficient of x^8 in the expasnsion of (1+(x^2)/(2!)+(x^4)/(4!)+(x^6)/(6!)+(x^8)/(8!))^2 is

2^(x)=4^(y)=8^(z) and (1)/(2x)+(1)/(4y)+(1)/(4z)=4

Solve :x-(2x+8)/(3)=(1)/(4)(x-(2-x)/(6))-3

int (1+sqrt(x))/(1+4sqrt(x))dx=(4)/(5)x^((5)/(4))-x+(8)/(3)x^((3)/(4))-4x^((1)/(2))+8x^((1)/(4))-8 log|x^((1)/(4))+1|+c

Find the angle between the cures given below : x^(2)=2(x+1), y=(8)/(x^(2)+4)