Home
Class 12
MATHS
Prove that sin^3alpha+sin^3((2pi)/3+alp...

Prove that `sin^3alpha+sin^3((2pi)/3+alpha)+sin^3((4pi)/3+alpha)=-3/4sin3alpha`

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that sin^3alpha+sin^3(120^@+alpha)+sin^3(240^@+alpha)=-3/4sin3alpha

Prove that sinalpha+sin(alpha+(2pi)/3)+sin(alpha+(4pi)/3)=0 .

Prove that sin^(3)alpha+sin^(3)(120^(@)+alpha)+sin^(3)(240^(@)+alpha)=-(3)/(4)sin3 alpha

The value of sin^(2)alpha+sin((pi)/(3)-alpha)sin((pi)/(3)+alpha) is

(1)/(sin3alpha)[sin^(3)alpha+sin^(3)((2pi)/(3)+alpha)+sin^(3)((4pi)/(3)+alpha)] is equal to

(1)/(sin3alpha)[sin^(3)alpha+sin^(3)((2pi)/(3)+alpha)+sin^(3)((4pi)/(3)+alpha)] is equal to

Prove that sin alpha+sin(alpha+2pi/3)+sin(alpha+4pi/3)=0

If cos3theta=cos3alpha, then the value of sintheta can be given by +-sinalpha (b) sin(pi/3+-alpha) sin((2pi)/3+alpha) (d) sin((2pi)/3-alpha)

If cos3theta=cos3alpha, then the value of sintheta can be given by +-sinalpha (b) sin(pi/3+-alpha) sin((2pi)/3+alpha) (d) sin((2pi)/3-alpha)

If cos3theta=cos3alpha, then the value of sintheta can be given by +-sinalpha (b) sin(pi/3+-alpha) sin((2pi)/3+alpha) (d) sin((2pi)/3-alpha)