Home
Class 11
MATHS
" If "|z(1)-1|<1,|z(2)-2|<2,|z(3)-3|<3,"...

" If "|z_(1)-1|<1,|z_(2)-2|<2,|z_(3)-3|<3," then "|z_(1)+z_(2)+z_(3)|

Promotional Banner

Similar Questions

Explore conceptually related problems

Minimum value of |z_(1)+1|+|z_(2)+1|+|z_(1)z_(2)+1| if |z_(1)|=1,|z_(2)|=1 is

If |z_(1)|!=1,|(z_(1)-z_(2))/(1-bar(z)_(1)z_(2))|=1, then

If z_(1) = 2 - i , z_(2) = 1 + i , " find " |(z_(1) + z_(2) + 1)/( z_(1) -z_(2) + 1)|

Minimum value of |z_1 + 1 | + |z_2 + 1 | + |z _1 z _2 + 1 | if [ z_1 | = 1 and |z_2 | = 1 is ________.

Minimum value of |z_1 + 1 | + |z_2 + 1 | + |z _1 z _2 + 1 | if [ z_1 | = 1 and |z_2 | = 1 is ________.

If |z_(1)|=1(z_(1) ne -1) and z_(2)=(z_(1)-1)/(z_(1)+1) then show that the real part of z_(2) is zero.

If |z_(1)|=1,|z_(2)|=1,|(1)/(z_(1))+(1)/(z_(2))|=(3)/(2) then find the value of 2|z_(1)+z_(2)|]|=(3)/(2) then

If |z_(1)|=|z_(2)|=...............=|z_(n)|=1 then |(1)/(z_(1))+(1)/(z_(2))+.........+(1)/(z_(n))|

Let z_(1),z_(2) be complex numbers with |z_(1)|=|z_(2)|=1 prove that |z_(1)+1|+|z_(2)+1|+|z_(1)z_(2)+1|<=2

If z_(1) is a complex number other than -1 such that |z_(1)|=1 and z_(2)=(z_(1)-1)/(z_(1)+1), then show that the real parts of z_(2) is zero.